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Abstract

In many search environments, searchers are learning about the distribution of offers in the market. I

conduct an experiment exploring a broad class of search problems with learning about the distribution of

payoffs. My results support the prediction that learning results in declining reservation values, providing

evidence that learning may be an explanation for recall. Theory predicts a “one step” reservation value

strategy, but many subjects instead choose to set a high reservation value in order to learn about the

distribution before adjusting based on their observations. Under-searching in search experiments may

stem from a reinforcement heuristic and lack of negative feedback after using sub-optimal strategies.
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1 Introduction

Much of the literature on consumer search behavior assumes that searchers know the distribution of offers

available in the market. In many markets the consumers who are most familiar with this distribution are the

consumers who search the least (Moorthy, Ratchford, and Talukdar 1997). Therefore, it may be unreason-

able to assume that consumers know the distribution in circumstances where they purchase infrequently or

where a large percentage of consumers are new to the market. Uncertainty about the distribution can have

many implications for search behavior depending on the form uncertainty takes. In this article I focus on
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circumstances where theory predicts that learning will result in declining reservation values similar to those

frequently seen in field and experimental search behavior (e.g. Brown, Flinn, and Schotter (2011)).

Most papers in the theoretical literature agree that with well behaved priors, searchers who are uncertain

about the distribution of values will use a “one step” reservation (or cutoff) strategy similar to those common

in standard search models.1 “One step” here means that the searcher is deciding between accepting the best

offer currently available and one additional search (Burdett and Vishwanath 1988; Dana 1994; Bikhchandani

and Sharma 1996; Dubra 2004; Mauring 2017; Kaya and Kim 2018).2 Furthermore, the initial reservation

value of a purely Bayesian learner should be above that which would be used for the expected distribution

from the priors, and reservation values decline as a search spell continues (Burdett and Vishwanath 1988;

Bikhchandani and Sharma 1996; Dubra 2004). The high initial reservation value comes not from a desire

to gather information about the distribution, but from the fact that a high observation will lead to more

optimistic posteriors and therefore a more persistent searcher. It takes a very high draw to cause the Bayesian

learner to stop after just one search. Declining reservation values stem from the fact that a low observation

is viewed not just as an unlucky draw, but as bad news about the distribution. Consequently this low draw

will lead to posteriors which are more pessimistic than the priors. A high draw may be sufficient to make the

searcher more optimistic, but any draw which would be high enough to raise the reservation utility above

its previous value will also be above that reservation value, meaning that the search spell ends before the

reservation value can increase.3 I refer to this elimination of searchers who would raise their reservation

values from the search process as the selection effect, whereby searchers who would increase their reservation

values are filtered out of the data because they cease searching.

This selection effect is important because it could serve as a potential explanation for real world behavior

which is inconsistent with standard sequential search theory without learning. Most notably, the decline

in reservation values means that a rational searcher will sometimes exercise recall or exit the market in an

environment with learning where they would not if they had full information. In a policy context this has

important implications for labor market search. In particular, the increasing pessimism of job searchers

could exacerbate the standard supply/demand dynamics that lead to low wages in a loose labor market. For

managers of firms, particularly firms which are acting as marketplaces, learning means that consumers need

to be shown appealing products early in their search process. Otherwise they are likely to believe that the

products on offer are low-quality or overpriced, which can lead to consumers exiting the market entirely (e.g.

1“Well behaved” here meaning that all distributions allowed by the priors should have a shared support, and one
observation should not move the posteriors too much.

2The term from the search literature is “myopic”, but I use “one step” here to avoid accidentally conveying pejorative
connotations. Especially given that the strategy is theoretically optimal.

3Note that this refers to reservation values after the initial draw. It takes a high initial draw to get the Bayesian learner
to stop after just one draw, but subsequent reservation values must decline.
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Nosko and Tadelis (2015)).

The selection effect has been thoroughly explored in the theoretical literature, but it has not previously

been tested in an experimental environment. In this article I attempt to fill this gap in the experimental

literature by presenting an experiment which compares subjects’ behavior in a simulated consumer search

environment with a known distribution (the “full information treatment”) to their behavior when they are

updating over a set of priors (the “learning treatment”). I elicit reservation values using a method similar to

Jhunjhunwala (2018) and Brown, Flinn, and Schotter (2011). Subjects exhibit declining reservation utility

in both treatments, consistent with the previous experimental literature, but the rate of decline is much

stronger in the learning treatment, suggesting that learning is a plausible explanation for the recall seen in

real world search data.4

While the selection effect appears to work well in this experimental environment, the prediction that

subjects will use a one-step reservation value does not. The change in the initial reservation values across

treatments is inconsistent across subjects. Higher ability subjects—as measured by numeracy metrics and

academic data—set higher reservation values than in the full information treatment and often maintained

these values for several searches. Lower ability subjects tended to decrease their initial reservation values in

the face of uncertainty. In a post-session questionnaire, those subjects who raised their initial reservation

values expressed a desire to gain information about the distribution. This heuristic (gathering information

and then deciding how to react) requires much less computation than the theoretically optimal strategy and

performs quite well in terms of search payoffs. Additionally, it results in behavior which is quite similar to

the “search funnel” described in the marketing literature, whereby consumers first engage in broad searches

within a market to learn about the products on offer and their prices before narrowing their search once

they have this information. Previous discussions of this search funnel have suggested that it may result

from searchers’ imperfect knowledge of their own tastes (Blake, Nosko, and Tadelis 2016). However, taste

variation is not a factor in my experiment. The similarity of behavior between the subjects in this article and

the description of the search funnel suggests that learning about the market may be sufficient explanation

for this phenomenon.

This information heuristic is likely to be of interest to researchers studying learning in complex envi-

ronments. The general form of separating an information gathering “explore” stage from payoff relevant

“exploit” behavior seems like it would apply to many economic contexts. For example, subjects in a market

experiment who are setting prices against uncertain demand might prefer to test out several prices to get

a sense of the market before they focus on maximizing profits. The heuristic performs well in this search

4Subjects were 50% more likely to exercise recall in the learning treatment than the full information treatment. The
p-value on a Mann-Whitney test for similarity of the treatments is less than 0.1%.
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environment, but the penalty for deviating from optimal behavior might be much larger in a different setting.

Despite some subjects setting higher initial reservation values in the learning treatment, most subjects

in this experiment drastically under-search relative to the theoretical optimum. I provide evidence that this

is a result of the structure of the game failing to give them negative feedback when they set a reservation

value which is too low. Subjects who draw a value close to their reservation value are much more likely to

increase their reservation value in the subsequent search. This draw makes the possibility of settling for a

low value more salient and encourages them to become more persistent. Stopping with a value high above

the reservation value does not intuitively feel like negative feedback, but stopping with a value close to or

below the elicited reservation value (the latter due to exercising recall) does. Therefore the only significant

change between search spells is subjects who reduce their initial reservation values in the following spell

after receiving this “negative” feedback. This pattern is suggestive of a situation similar to Charness and

Levin (2005), where the obvious reinforcement heuristic leads to actions opposite of those which would be

indicated by Bayesian rationality.

2 Related literature

My experimental design emulates models where the selection effect causes reservation values to decline

(Burdett and Vishwanath 1988; Bikhchandani and Sharma 1996), but it also contributes to a broader

literature on search and learning. Dubra (2004) emphasizes the importance of priors in search behavior, and

shows that with some priors a specific observation can cause the reservation value to increase drastically.

Dana (1994) explores the implications of strategic firms in a consumer search environment with learning,

but consumers’ rational expectations about firm pricing strategies mean the selection effect is not present.

Mauring (2017) and Kaya and Kim (2018) describe models with alternative forms of learning which allow

reservation values to increase or decrease. Yang and Ye (2008) create a theoretical model explaining “rocket

and feather” pricing in markets where consumers learn about the value of search which has subsequently

been used to explain gasoline pricing (Chandra and Tappata 2011; Lewis 2011). However Yang and Ye’s

model is similar to that of Varian (1980) in that searchers know all the prices in the market, meaning that

the learning dynamics do not allow for a reservation value. These examples illustrate that, while quite robust

within the standard sequential search environment, the selection effect is dependent on the primary source

of learning being consumers’ own observations.

This article also contributes to a small but growing experimental search literature. The seminal exper-

imental economics work in search was conducted by Schotter and Braunstein (1981), whose main finding

was that consumers tend to under-search relative to the theoretical optimum for a risk neutral agent. Most
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experiments have been similar to the design of Schotter and Braunstein in that they model the search pro-

cess by allowing subjects to either continue searching or stop after observing an offer rather than eliciting

reservation values (Rapoport and Tversky (1970), Kogut (1990), Zwick et al. (2003), and Caplin, Dean, and

Martin (2011)). To my knowledge Jhunjhunwala (2018) and Brown, Flinn, and Schotter (2011) are the only

other experiments which elicit reservation values from subjects. Both papers find that reservation values

decline over the course of search spells despite subjects having full information about the distribution from

which they are drawing prospects. Some of this decline may be due to the fact that subjects do not fully

understand the distribution even after having it explained to them. Rapoport and Tversky (1970) show

that subjects fail to converge to the theoretical optimum level of search even after weeks of training in a

distribution. However, Brown, Flinn, and Schotter show that time spent searching has a stronger effect on

the decline in values than the number of searches, so their fatigue hypothesis seems more plausible.

A few other experiments have considered uncertainty. Falk, Huffman, and Sunde (2006) consider search

in a labor market frame with uncertainty as to the probability of getting an offer upon searching.5 Cox and

Oaxaca (2000) investigate search behavior in an environment with uncertainty and unknown distributions.

Their environment is one of the most similar from the previous literature to that in this article. However, they

use discrete uniform distributions with a finite search horizon. Importantly, their distributions often allow for

observations which fully reveal the distribution. Because of the nature of their priors, they find that behavior

is inconsistent with a one-step reservation value strategy. Indeed, one of their main research questions is

whether theoretical models can successfully predict behavior in environments where theory predicts that a

reservation value strategy will not be used, while the priors in my experiment are selected specifically to

ensure that the theory predicts a reservation value strategy. Because they do not elicit reservation values,

the majority of their analysis consists of tests evaluating whether observed stopping behavior is significantly

different from theoretical predictions.

I am not aware of any other experiments which elicit reservation values from participants in a setting

with uncertainty about the distribution of match values. This is significant since most of the theoretical

predictions I test are stated in terms of reservation values, so I can approach this problem more directly than

previous work. Eliciting reservation values does come at the sacrifice of making the assumption that subjects

would use a reservation value strategy given freedom to choose. While I show that there is some evidence

that this may not be true with an uncertain distribution, I believe that it is generally a safe assumption.

Sonnemans (1998) shows that reservation value procedures are among the most frequently chosen when

subjects are given the freedom to design their own strategies. Additionally, even if consumers would not use

5This situation is strategically more similar to uncertainty about the cost of search than the uncertainty about the
distribution described in the articles which form the theoretical basis for my experiment. See Yang (2013) or Casner (2020) for
a more in depth discussion of search environments with a probability of failure and the similarity to an increase in search costs.
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a one-step reservation value strategy of their own accord, the elicitation method provides a more nuanced

picture of their perceived value for an additional search than implicit estimation methods using only stopping

behavior would. For example, the information demand heuristic described in Section 6.2 would be much

harder to study and might even have gone unnoticed without the elicited reservation values in the learning

treatment.

There is a small empirical literature on search with learning. De los Santos, Hortaçsu, and Wildenbeest

(2017) is the only empirical paper I know of which addresses the selection effect directly. They use data from

online MP3 player purchases to demonstrate that ignoring the possibility that consumers learn while they

search can lead to severe statistical bias in estimations of search cost. Weisbuch, Kirman, and Herreiner

(2000) describe consumer search behavior in a Marseille fish market, and show that consumers expend

significant effort making sure that they have a general idea of the prices being charged on the market even

though they generally only purchase from one store. Nosko and Tadelis (2015) show that consumers learning

about the reputation of sellers on eBay exhibit increasing pessimism similar to the selection effect.

3 Theory

The class of search models explored in this paper is a one-sided, undirected, and sequential consumer search

environment with recall, unit demand, and non-strategic firms.6 Consumers’ utility from consuming a

product is a stochastic consumer-firm match value u which is drawn randomly from some distribution and

which consumers only observe upon visiting a firm. Consumers pay a search cost c to visit a firm, and they

can only purchase from a firm they have visited. Since the firms are non-strategic, we can think of them as

all charging the same price, or equivalently we can think of a match value as being the consumption value

for a firm’s product net of its price, in which case with the distribution of values stems from different prices

being charged in the market. Regardless of interpretation, a consumer who searches k times and stops with

match value u receives final utility

u− c ∗ k (1)

From Weitzman (1979), the optimal strategy in this environment is to use a one-step reservation value

strategy. This means that the searcher will choose a reservation value, and if the highest value observed so

far is below that reservation value then they will search once more and make a new decision based on the

6Non-strategic firms are not strictly necessary for the selection effect, but for the purposes of this experiment I am
interested in consumer rather than firm behavior, so considering firm strategy would introduce counterproductive complexity.
This model is also equivalent to one sided labor market search models with non-strategic wages.
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new draw. If their draw is above the reservation value then they will stop searching and consume the highest

option they have observed. Given a distribution of utility values F (·) with support [u, ū] and density f(·),

the reservation utility x will be the minimum utility at which the cost of searching (c) equals or exceeds the

expected value of an additional search. For a continuous distribution with free recall this is the x which

solves7

∫ ū

x

(u− x) dF (u) = c (2)

In a stationary environment, neither the cost of searching nor the distribution of values changes as the

consumer continues to search, so the reservation value should be constant, rather than declining as we see

in actual behavior. If consumers are learning about the distribution of prospects as they search, then the

stopping rule changes slightly, but a one-step rule is still optimal assuming the prior distributions have the

same support and a single observation does not change beliefs too much (Burdett and Vishwanath 1988). In

the experiment all uncertainty is about the mean of the distribution, so I focus on that environment here.

Let µ be the mean of the distribution, µ∗ ∈ [µ, µ̄] the searchers’ prior mean and g(µ|µ∗, x1, x2, x3, ..., xn)

the posterior density assigned to µ given the priors and previous observations x1, x2, x3..., xn. The stop-

ping rule for a one-step searcher is then stopping after observing any u > x(µ∗, x1, x2, x3, ..., xn) where

x(µ∗, x1, x2, x3, ..., xn) solves

∫ µ̄

µ

∫ ū

x(µ∗,x1,x2,x3,...,xn)

(u− x(µ∗, x1, x2, x3, ..., xn)) dF (u|µ)g(µ|µ∗, x1, x2, x3, ..., xn)dµ = c (3)

The selection effect says that there is no observation which could place a high posterior weight on a high µ

without also being above the reservation value. Consumers who continue to search must become increasingly

pessimistic as long as the priors are well behaved. Therefore x(µ∗, x1, x2, x3, ...) must decline as the number

of searches increases. My experiment is designed to test if the selection effect appears in actual behavior.

Previous experimental work (Brown, Flinn, and Schotter 2011) has shown that reservation values decline

even in environments with a known distribution, so it is clear that learning about the distribution cannot

be the only factor leading to declining reservation values.

Two other common explanations for declining reservation values include failure to account for the sunk

cost fallacy (Kogut 1990), and fatigue (Brown, Flinn, and Schotter 2011). Failure to account for the sunk cost

fallacy means that the searcher fails to treat expended search costs as sunk, instead adding the them to the

right hand side of Equation (2). Fatigue is the idea that continuing to search is tiring and/or boring, so that

7Recall in my experiment is costly, but the stopping condition with costly recall is more complex and the intuition is
identical, so I use free recall for the explanation of the one-step stopping rule.
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the cost of searching (c) actually increases over time. All three processes should result in a monotonically

declining reservation value and the effects are difficult to separate in an empirical setting, but they are

distinguishable in a laboratory environment. I control for fatigue in my experiment by tracking how long

subjects have been searching when they set reservation values. I do not explicitly control for sunk cost, but

Kogut’s description of sunk cost mostly focuses on the induced search cost rather than effort. Since the

induced search cost is constant whether or not subjects know the distribution, any difference between the

treatments should be entirely the result of the difference in information structures.

4 Design of the Experiment

The experiments for this article were conducted in the Experimental Economics Laboratory at the Ohio

State University using zTree software (Fischbacher 2007). The design of the experiment was within-subject,

with subjects participating in seven search spells with a known distribution and seven search spells with an

uncertain distribution. I refer to the search spells where they knew the distribution as the full information

treatment and the search spells with an uncertain distribution as the learning treatment. To test for order

effects, some subjects experienced the learning treatment first and some the full information treatment first.

The 81 participants were recruited through The Ohio State University Economics Department’s “Online

Recruitment System for Economic Experiments” (ORSEE) (Greiner 2015). 38 of these subjects experienced

the full information treatment first, and 43 saw the learning treatment first. The average payoff for the

experiment was $13.68, with a minimum of $7.55 and maximum of $18.75. Each session took approximately

1 hour.

4.1 Anatomy of an experimental search spell

To simulate the search process, subjects drew values denoted in experimental currency units from a truncated

normal distribution with support [0,700], a standard deviation of 100, and a mean which depended on the

treatment.8 To simulate the cost of searching each draw required subjects to pay a cost of 5 experimental

currency units. Subjects’ final payoffs for a search spell were the maximum match value observed minus the

sum of search costs accrued over the course of the spell. For example, a subject who searched 5 times and

stopped with a match value of 400 would have a final payoff of 375 experimental currency units for that

search spell. This payment structure creates a finite horizon for search. I impose a non-negativity constraint

on payout for the search task, but a subject who searched sufficiently many times could theoretically have

8For clarity, the standard deviation of the original distribution was 100. It is therefore slightly smaller for truncated
distribution, but the amount of mass removed by the truncation is quite small, so the difference is negligible.
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accrued a final payoff of 0. I included a notification at 25 searches warning subjects of this possibility, but

the longest search spell in all of the data was 19 searches, so this warning was not seen by any subject, nor

did any subject come close to a 0 payoff in any search spell. It is worth noting that even at 20 searches the

total accumulated search costs would be 100, meaning that a subject would have to be incredibly unlucky

to not receive a positive payoff after that many searches. Given the ubiquity of under-search in previous

experiments and the small search cost, it does not seem likely that this finite horizon had any impact on

search behavior.

The theory makes specific predictions about how the path of reservation values should differ when the

distribution of values is and is not known. The main outcome of interest in this experiment is whether

subjects’ reservation values decline within search spells and if that decline is steeper when they are learning

about the distribution (see Section 5 for a more detailed description of the hypotheses in the context of this

experimental design). In order to elicit reservation values at every point in a search spell, subjects were

asked to input a “minimum acceptable value” (i.e. a reservation value) before each draw. If the draw was

above the subject’s minimum acceptable value, then that would be interpreted as an “acceptable offer” and

the search spell ended with the payoff as described above. If the draw was below this reservation value,

then subjects had the option to either pay the search cost to accept their highest draw so far, equivalent

to exercising costly recall in a traditional search environment, or they could state a new reservation value

and pay the search cost to receive another draw. Each search spell continued until the subject either drew

a match value above their current minimum acceptable value, or accepted their highest draw. Costly recall

ensures strict incentive compatibility of stating the true reservation value for every search. A value below

the true reservation value only changes the payoff if it causes the subject to stop after observing a value

that is, by definition, lower than the payoff at which they would wish to stop. Stating a value above their

true reservation value and recalling leads to a strictly lower payoff than stating the true reservation value in

the first place because of the cost of recall. Each treatment consisted of two practice search spells with no

payoff, and five payoff relevant spells. Payment for the search task was calculated by randomly selecting the

results of one of the five payoff relevant search spells in each treatment.
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4.2 Treatments

Figure 1: An example of the user interface subjects saw in the full information treatment. The horizontal
axis of the graph is the range of possible value draws and the histogram shows 10,000 simulated draws from
the distribution (an approximation of the density function). The dots on the axis are values that the subject
drew themselves.

In the “full information” treatment, the mean of the truncated normal distribution was 350 for every search

spell and subjects were aware of this fact. In addition, subjects were shown a histogram with the results of

several thousand simulated draws from the distribution. Once subjects began to search, the values they drew

appeared as red dots on the axis of the histogram. Figure 1 shows the user interface in the full information

treatment.

In the learning treatment, the support of the distribution was still 0 to 700 units, but the mean of the

distribution was determined randomly at the beginning of each search spell. The mean was drawn from a

U[150,550] distribution, and subjects were aware of both the range and shape of the prior distribution, but

did not know the realized value. Figure 2 shows the user interface in the full information treatment.

Figure 3 shows the density plots for two possible distributions that subjects might have faced in the

learning treatment. Importantly, the endpoints of the parameter distribution were chosen to be sufficiently

far away from the endpoints of the truncation that a high or low mean had minimal effect on the shape

of the distribution. Subjects guessed the actual value of the mean after each search spell in the learning

treatment. If their guess was within 100 of the actual mean, then they had 100 minus the absolute value of
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Figure 2: An example of the user interface subjects saw in the learning treatment. It is mostly identical to
the full information treatment, but the subjects did not receive full information about the distribution of
payoffs and only saw their own draws as dots on the axis.

the difference between the correct number and their guess added to their payoff for that search spell. This

data is used in Section 8 to evaluate the determinants of the distance between subjects’ guess and the actual

value. Experimental currency units were converted to dollars at a rate of 1ECU = $0.014USD.

4.3 Supplemental data

The experiment included several additional tasks to gather supplemental data. Subjects underwent a risk

aversion assessment similar to Holt and Laury (2002) to track risk preference. To track numeric competency

they completed a symbolic number mapping line task (Peters and Bjalkebring 2015). For the number line

task, subjects were shown an otherwise unmarked number line with endpoints between 0 and 1,000 and they

were asked to mark the position of a sequence of numbers on that line. The closer their marks to the actual

positions of the numbers on the line, the more numerate they were considered to be. Numeracy is correlated

with better ability to process information, and so the expectation was that more numerate subjects would

exhibit behavior closer to the optimal strategy. Additionally, Schley and Peters (2014) show that higher

symbolic number mapping numeracy is associated with more risk neutral behavior. This comes from the

association between symbolic number mapping numeracy and ability to form accurate intuitive estimates of

numeric information. Subjects with low numeracy scores tend to estimate the value of experimental lotteries
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Figure 3: The density plots for two possible distributions in the learning treatment. The solid line shows
the density for a mean of 300 and the dashed line shows a mean of 450.

more conservatively and so exhibit more risk averse behavior. There was also a subjective numeracy ques-

tionnaire which assessed subjects’ self-perception of their ability with numbers. Falco (2019) hypothesizes

that subjective numeracy may have effects on behavior separate from its correlation with actual numeric

ability.9 Those subjects who have higher subjective numeracy have been shown to have a desire to use more

numeric information than those who are less confident with numbers. The hypothesis behind measuring

subjective numeracy was that this behavior could manifest as greater persistence in search spells with an

unknown distribution due to a desire for more information about the distribution.

5 Hypotheses

Applying Equation (2) and Equation (3) to the experimental environment, the optimal reservation value in

the full information treatment is 475—which implies that the average search spell should be 9.5 searches

long—and the optimal initial reservation value in the learning treatment is 593, although the expected length

would not be trivial (or indeed particularly informative) to calculate because of path dependence between

the reservation values and observations. According to the theory, reservation values should be constant in

the full information treatment, while the learning treatment will lead to declining reservation values. The

rate of decline is also path dependent as a searcher who sees middling values will be less pessimistic than

one who has seen a number of low draws.

From the previous literature we tend not to see constant reservation values with a known distribution.

However, the selection effect from the theory should only be present in the learning treatment. Therefore the

main comparison of interest is whether the rate of decline is significantly steeper in the learning treatment

9The data from this project was shared with David Falco for a separate research project. I would like to thank him both
for suggesting the subjective numeracy assessment and providing the questionnaire. See his paper (Falco 2019) for a
psychological investigation of the relationship between numeracy and consumer search.
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than in the full information treatment. This is summarized in Hypothesis 1:

Hypothesis 1. Reservation values may or may not decline within search spells in the full information

treatment, but they will decline in the learning treatment. If reservation values decline within search spells

in both treatments, then the rate of decline will be steeper in the learning treatment and this will be driven

by increasing pessimism about the distribution of match values.

Based on the predictions of the theory and behavior in previous experiments with full information, the

design of this experiment assumes that subjects will using a one-step reservation value strategy in both

treatments to elicit reservation values. While the previous literature has provided ample evidence that this

is true when subjects know the distribution (e.g. Sonnemans (1998) or Brown, Flinn, and Schotter (2011)),

it is important to check that this is indeed the case when interpreting the results of the learning treatment.

Hypothesis 2. Subjects will use a one-step reservation value strategy in the learning treatment.

Testing Hypothesis 2 is not quite as straightforward as Hypothesis 1, and is partly a qualitative exercise.

The key feature of a one-step strategy is that the Bayesian searcher will be using the information conveyed

by searches, but will not search specifically to gain information. If a rational Bayesian agent observes an

initial draw of 550 in the learning treatment, then they will continue searching not because they want to

gather more information but because their posterior beliefs put high weight on favorable distributions. If

the first observed value is above the theoretically optimum reservation value of 563 then the posteriors are

optimistic, but the expected marginal value of one additional search is smaller than the search cost. If the

searcher observes 550 and then 520, then the posterior beliefs would still be quite high, but the reservation

value would be approximately 540 and the searcher would exercise recall. An example of behavior in this

experiment that is inconsistent with a one-step strategy is entering a reservation value of 700 because there

is no possibility of drawing a value which would exit the search spell. This ensures that the searcher must

either exercise costly recall or search at least once more, meaning that there is no possibility of completing

the search process in one step. Another strategy that some subjects use is that they will set a high but not

extreme reservation value, e.g. 600. This reflects the reasoning that if they get a draw above 600 then it

does not matter so much what the actual distribution is, but they will then maintain that reservation value

for several draws before adjusting based on their observations. The fact that they are waiting to make use

of the informational content of the draws is again inconsistent with deciding between accepting the current

highest value or drawing once more. Result 1 and Result 2 in Section 6 give more detailed descriptions of

how Hypothesis 1 and Hypothesis 2 fare when evaluated against the data.

Section 7 was a reaction to finding under-searching at levels similar to those in other experiments. One

possible explanation for this under-searching is that, similar to overbidding in second price auctions, subjects
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are usually not punished in an obvious way for setting a reservation value below the optimal level. Even

when they are forced to settle for a low value as a result of entering a low reservation value they still receive

a positive payout. If on the other hand, a subject experiences a “near miss”, where they receive a draw

that is close to, but still below their sub-optimal reservation value, then this may make them aware of the

possibility that they could exit the search spell with a low draw and cause them to increase their reservation

value.

Hypothesis 3. Subjects will be more likely to increase their reservation value if they see a draw which is

below, but close to their reservation value.

Charness and Levin (2005) show that subjects tend to respond to a high payout by repeating the strategy

that led to that payout even when doing so is not optimal. If subjects use a similar reinforcement heuristic

in this environment, then we would expect a subject who sets a low reservation value and receives a draw

far above that reservation value to imitate the strategy that received this result in the following search spell.

Hypothesis 4. Subjects who draw a value high above their reservation value in one search spell will set an

initial reservation value in the following search spell which is similar to the initial reservation value in the

search spell which received the high draw.

Result 3 and Result 4 summarize how hypotheses 3 and 4 fared in the data.

In Section 8, I analyze subjects’ behavior in comparison to the theoretically optimal behavior. I did not

enter this project with a strong prior about how behavior would differ from the optimum, so Result 5 in

that section does not have a corresponding hypothesis here.

Finally, Section 9 describes a robustness check evaluating whether subjects behavior is similar given a

higher search cost. Result 6 does not have a corresponding hypothesis apart from the implicit null prediction

that behavior will not be significantly different from behavior in the low search cost sessions apart from

shorter search spells.

6 Main Results

Because the practice spells were not payoff relevant, I drop those spells from all analysis. The results in the

rest of the paper use the data from the ten payoff relevant spells.
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Full Information Learning

Average Search Length 2.785 3.217

(0.127) (0.158)

Average Search Profits 418.17 409.77

(3.876) (6.376)

Table 1: Summary statistics for each treatment. Search profits are stated in experimental currency units.
Standard errors are shown in parentheses.

Table 1 shows summary statistics for the full information and learning treatments. The average search

length is longer with the learning treatment, but the average payout for the searchers is lower. This is

because the average length of search spells in the learning treatment is inversely correlated with the mean

of the distribution (as can be seen in Figure 8). I discuss the implications of this correlation in Section 6.1.

Figure 4: Kernel density representation of the length of the search spells.

Figure 4 shows a kernel density representation of the number of searches in each search spell. Most

search spells lasted less than 5 searches, and 97% of all spells lasted less than 10 searches, I therefore drop

search spells longer than 10 from the graphical analysis in this section. If risk neutral subjects were searching

according to the theoretical optimum in the full information treatment then the expected number of searches

would be 9.5. Subjects are therefore under-searching.

Figure 5 shows the reservation values of subjects at each point in their search spells aggregated across

all search spells. Thus the left most box and whisker describes the initial reservation values in all of the

full information search spells, whereas the 2nd from the left collects 2nd reservation values from the full

information spells for all subjects who searched twice and so on. The boxes represent the middle 50% of
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Figure 5: The reservation values by depth in search spell and treatment.

the data, with the upper end of each box being the 75th percentile of the data and the lower end the 25th

percentile. The whiskers contain all data that is less than 1.5 times the inter-quartile range away from the

upper or lower quartile of the data.10 Dots represent outliers. The optimum reservation value in the full

information treatment is 475 and the optimum initial reservation value for a risk neutral searcher using Bayes’

rule in the learning treatment is 593. Consistent with under-searching in the previous experimental search

literature, most subjects stated reservation values well below the optimum in both treatments, although

there is more dispersion in the learning treatment than in the full information treatment.11 It is possible

that some of this dispersion can be attributed to differences in values observed by different subjects in the

learning treatment causing different inferences about the mean, but this cannot explain the difference in

initial reservation values.

Figure 6 shows that subjects had disparate responses to the change in environment. There is a much wider

spread in the distribution of initial reservation values in the learning treatment. Some subjects increased

their reservation values, while others reduced their initial reservation values. Of particular interest is the

cluster of initial reservation values at or near the top of the possible outcomes in the learning treatment,

including three observations above the support of possible draws. This is the most extreme version of the

information demand heuristic described in the introduction, with subjects setting reservation values that will

almost certainly not be drawn in order to get a better sense of the distribution. This behavior is completely

inconsistent with a one-step strategy as the one-step strategy is only concerned with the expected marginal

benefit—conditional on beliefs—of one additional draw. Drawing a value with the intent of making even

10The inter-quartile range is the distance between the 75th and 25th percentile.
11The average distance from the optimum was approximately 85 in the full information treatment and 185 in the learning

treatment. I discuss distance from the optimum more thoroughly in Section 8.
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Figure 6: Initial reservation values by treatment.

more draws afterward should not occur according to the theory.

Subjects also had differing reports about their own reaction to the learning environment. In a post session

questionnaire asking subjects to describe their strategies in the learning treatment, the two most common

responses were variations on either “Chose high until enough draws were done to see a distribution” or “The

unknown distribution was harder so I chose to be even more conservative and opt for a lower minimum

because I didn’t want to draw multiple times” (both quotes are actual responses). Thus there appear to be

two behavioral factors at play. The first is a desire to learn about the distribution before making a decision,

which increases reservation values. The second is aversion to the increased complexity in the uncertain

environment which leads to more conservative search behavior.

The demand for information from the first factor contrasts with the high reservation values in the one-step

strategy from the literature in that many of the subjects will pick a high reservation value and stick with it

until they have enough information to begin adjusting, rather than adjusting with every draw. While this

demand for information is not strictly optimal, it is a well performing heuristic and much easier to calculate

than the true optimal reservation value. For context, calculating the optimal reservation values given data on

subjects’ observations took a computer nearly an hour. Thus, this heuristic is likely boundedly optimal given

that the theoretically optimal strategy is too computationally intense to actually implement. It separates the

complex problem of simultaneously exploring the environment and exploiting previously gathered information

into an “explore” stage and an “exploit” stage. This explore stage typically lasted for 2-3 searches, but the

length of the exploit stage was much more variable since it depended on the information gathered in the

initial searches. A subject who had unusually high initial draws from an unfavorable distribution would
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be much more likely to continue searching for a long time than one who had low draws from a favorable

distribution. I discuss this heuristic more thoroughly in Section 6.2.

6.1 The reservation value path

(a) The kernel density of the normalized reservation
values in each treatment. The initial searches have
been dropped from this graph.

(b) The normalized reservation values by depth in
search spell and treatment. Note that the data starts
at the 2nd search since the first value is always 0 due
to the normalization.

Figure 7: The kernel density and approximate paths of the normalized reservation values.

The main interest in this project is in the change in reservation value paths when subjects are learning as

opposed to when they have full information about the distribution. Using the unmodified reservation values

masks patterns in the reservation value paths. For example, the apparent flat or upward trend of reservation

values in the full information treatment in Figure 5 is an illusion caused by the fact that subjects with low

reservation values end their searches earlier. This creates a survivorship bias that appears to give a positive

correlation between depth in a search spell and reservation values. To correct for this bias, much of my

analysis in this paper uses subjects’ normalized reservation values. That is, I subtract the initial reservation

value from the later reservation values in each search spell so that only the change in reservation values

remains. Formally, for the kth search by subject i in the j th search spell, the normalized reservation value

is given by

Normalized Reservation Valueijk = Reservation Valueijk − Reservation Valueij1 (4)

I drop the first search from graphs involving the normalized reservation values since this value is always 0. As

Figure 7b shows, the selection effect is much more apparent when looking at the normalized reservation value.

There is a declining trend in both treatments, but it is much stronger when subjects are learning about the

18



distribution. The reservation values are so strongly concentrated around 0 in the full information treatment

that the means and the upper end of the inter-quartile ranges very nearly coincide—making them difficult to

distinguish in the graph. Similarly, Figure 7a shows the kernel density of the normalized reservation values

in each treatment after the initial search. The peak of the density for the full information treatment is firmly

over 0, with little deviation, again reflecting the fact that many subjects picked a reservation value and did

not vary far from it. In the learning treatment, not only is there a long tail reflecting declining reservation

values, but the peak of the kernel density is noticeably leftward of 0, reflecting the much stronger decline in

reservation values along search spells in the learning treatment. 90% (76 out of 81) subjects lowered their

reservation values more often than they raised them in both treatments. The difference is more striking when

we look at behavior spell by spell, with approximately half of the spells in the full information treatment

having a decreasing trend in the reservation values and most of the remaining being flat. However, in the

learning treatment approximately 70% of the reservation value paths showed a decreasing trend.

Figure 8: The normalized reservation values in the learning treatment by depth in search spell, broken down
by the true mean of the distribution. A low mean is less than 280, a high mean is greater than 415.

The graphical evidence strongly indicates that this decline is primarily due to the selection effect. We

can see in Figure 8 that subjects with high draws for the mean tend to have much shorter search spells, and

even then the tendency is for the reservation value to decline since continuing with a high mean is correlated

with a high initial reservation value. When the distribution is less favorable, search spells tend to be longer

and reservation values exhibit a much stronger decline. This pattern demonstrates that welfare implications

for searching from an unknown distribution are doubly negative. Not only is the optimal strategy more

difficult to approximate, but a poor distribution leads to increased expenditure of search costs in addition to

a low expected payoff. This pattern is strikingly similar to Blake, Nosko, and Tadelis’s (2016) finding that
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successful search spells on eBay tend to be significantly shorter than unsuccessful ones.

Dependent Variable: Normalized Reservation Value

Covariates Coefficients (Std. Error)

Learning 9.831

( 21.0405 )

# of searches 1.1402

( 1.8340 )

Learning*# of searches -3.8343

( 3.3525 )

Time -0.5268**

( 0.2230 )

Learning*Time -0.9405**

( 0.3956 )

Period 3.3311*

(1.7622)

Number of Subjects 81

Number of Observations 2,428

Note: *,**,*** indicates significance at the 10, 5, and 1 percent levels respectively.

Standard errors are shown in parentheses.

Table 2: Fixed effects OLS predicting the reservation value path. Fixed effects grouped on subject and
period.

The results of a fixed effects ordinary least squares regression of the normalized reservation values on

predictive variables are shown in Table 2.1213 “# of searches” is the number of times a subject has searched

within a given search spell. The number of searches is not predictive of changes in the reservation value, but

both time spent searching and the interaction of time with the learning treatment are significant and negative.

Time is measured in seconds since the beginning of the search spell.14 This result is consistent with Brown,

Flinn, and Schotter’s (2011) result that time spent searching has a greater impact on reservation values

than the number of searches. “Learning” is a dummy for the learning treatment, and it is not significant

on its own, but the interaction between time spent searching and learning is significant, consistent with

the selection effect on reservation values. However, this interaction could also be caused by greater fatigue

in the more complex learning environment. Period refers the number of search spells completed, so data

associated with a subject’s third search spell would have a period value of 3. This coefficient is marginally

significant and positive, which in the context of this regression is evidence suggesting that subjects became

more persistent as they gained more experience with the environment.

To separate the fatigue explanation from the selection effect and to explore further the factors driving

the changes in reservation values, I create an “update” variable, which takes on a value of 1 if a subject

increases their reservation value above the previous one, 0 if the subject does not change their reservation

12I do not include subject level controls here because the fixed effects regression makes them redundant.
13All regressions in this article use robust standard errors (clustered on subject where appropriate). Insignificant covariates

are dropped from regression tables to aid readability. A copy of de-identified data and a commented version of the STATA
code used to run all regressions is available from the author upon request.

14A regression using time since the beginning of the experiment rather than since the beginning of the search spell yielded
broadly similar results.
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Dependent Variable: Change in Reservation Value

Covariates Coefficients (Std. Error)

(1) (2)

Previous Observation -0.0004 -0.000

( 0.0004 ) ( 0.0005 )

Learning* Previous Observation 0.0019*** 0.0018***

( 0.0003 ) (0.0005)

SMAP Numeracy Score 0.0090*** 0.0047

( 0.0044 ) (0.0083)

Time -0.0082* -0.0109**

( 0.0046 ) (0.0050)

Learning*Time -0.0085** -0.0081*

( 0.0040 ) (0.0045)

Academic Controls No Yes

Upper Cutoff 0.9268 0.5974

Lower Cutoff -0.7165 -1.2226

Number of Subjects 69 53

Number of Observations 1,670 1,220

Note: *,**,*** indicates significance at the 10, 5, and 1 percent levels respectively.

Standard errors are shown in parentheses.

Table 3: Random effects ordered probit regression predicting the direction of change in reservation values.
None of the academic controls (ACT, GPA etc.) in the 2nd regression were significant, therefore I omit their
coefficients to save space.

value, and -1 if the subject lowers their reservation value.15 Table 3 shows the results of a random effects

ordered probit on this update variable. “Previous Observation” is the last value the subject drew before

setting a new reservation value, if subjects are learning using an approximation of Bayes’ rule, then this

value should be the only information they are using to update their beliefs since all previous observations are

already incorporated into the priors. The previous observation only has a significant effect in the learning

treatment, and the coefficient is positive, supporting the idea that the decline in reservation values in the

learning treatment is driven significantly by changes in beliefs as a result of the observed values. In the

context of an ordered probit with three outcomes, a positive coefficient implies a positive correlation with

the event of raising the reservation value and a negative correlation with lowering the reservation value.16

Therefore the significant positive coefficient on the previous observation means that subjects who observe

a high (low) value are more (less) likely to raise their reservation value in the following search and less

(more) likely to lower their reservation value, while the impact on the probability of maintaining the same

reservation value is ambiguous. While this does support the selection effect, time spent searching has a

significant effect both on its own and when interacted with the learning treatment. Subjects are more likely

to lower and less likely to raise their reservation value as they spend more time searching. Therefore, it is

likely that fatigue is playing a role as well.

The SMAP numeracy score is the mean absolute error of the subjects’ performance on the number line

15Although the theory predicts strictly declining reservation values, I avoid making this restriction since subjects did
occasionally raise their reservation value, albeit rarely.

16The implications for the middle event (maintaining the same reservation value) are ambiguous. I thank an anonymous
referee for pointing this out.

21



task described above, so a higher SMAP score indicates a less numerate subject.17 Numeracy is significantly

predictive of behavior when there are no other proxies for ability, but insignificant when GPA and ACT scores

are introduced to the regression. This is likely an increase in standard error caused by loss in efficiency of the

regression because the academic data and the SMAP score are both serving as proxies for numeric ability.18

Less numerate subjects are less likely to adjust their reservation values downward and more likely to raise

their reservation values with any given search, which is partly due to the fact that they tended to set lower

reservation values in the first place.

Result 1. The difference in reservation value paths between treatments is supportive of the selection effect

from Hypothesis 1. Reservation values decline within search spells in both the full information and learning

treatments, but the rate of decline is much steeper in the learning treatment. The informational content of

the draws in the learning treatment is one of the main drivers of this additional decline, which is consistent

with the prediction of increasing pessimism within search spells.

6.2 The information demand heuristic

Hypothesis 2—that searchers will use a one-step reservation value strategy with well behaved priors—does

not fare as well as the selection effect. I refer to the strategy of setting a high initial reservation value and

adjusting only after a few observations in the learning treatment as the “information demand heuristic”. I

define any search spell with an initial reservation value over 400 which is maintained at least through the

second search as using this strategy. I define any subject who used this strategy in at least two of their payoff

relevant learning treatment search spells as a high information demand subject or “information demander”;

25 out of the 81 subjects fit this description. While these subjects are setting high initial reservation values

in response to uncertainty much as Bayesian searcher would, this heuristic is not a one-step strategy. The

reason why the initial reservation values are higher differs drastically from the factors in the theory. The

initial reservation value is high in the theory because a high initial draw means that the one-step Bayesian

searcher is more optimistic about continued search, with subsequent draws leading to declining values. With

this heuristic, the initial value is high because the searcher wants to search more than once before deciding

whether or not to stop. More restrictive definitions for the heuristic or type (e.g. maintaining the same

reservation value through the 3rd search or using the strategy for three of the learning search spells) yield

similar qualitative results to those described here.

Table 4 shows the results of a probit predicting whether a subject is classified as a high information

17The number line task involved completing the task 10 times, so SMAP = 1
10

10∑
i=1
|ith input value− ith actual value|

18The academic controls were not significant when regressed without numeracy. Also note that academic records were not
available for all subjects, so the second regression also has fewer subjects.
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Dependent Variable: Information Demand Type

Covariates Coefficients (Std. Error)

(1) (2)

SNS Score -0.4679** -0.5453**

( 0.2361 ) ( 0.2652 )

ACT Score - 0.1936***

- (0.0728)

Other Academic Controls No Yes

Number of Subjects 81 55

Number of Observations 81 55

Note: *,**,*** indicates significance at the 10, 5, and 1 percent levels respectively.

Standard errors are shown in parentheses.

Table 4: Probit predicting whether a subject would be classified as a high information demand type.

demand subject. “SNS Score” represents how subjects rated their comfort and ability with numeric infor-

mation in the subjective numeracy survey, with a higher score indicating more comfort with numbers and a

higher self-assessment of numeric ability. Interestingly, numeric competency is not correlated with a subject

being an information demander, and subjective numeracy is negatively correlated with use of the heuristic,

which is the opposite of Falco’s (2019) hypothesis that increased subjective numeracy will lead to more de-

mand for numeric information. One potential explanation for this discrepancy is that subjects with greater

subjective numeracy may have a greater tendency to use numeric information, and so they feel a desire to

adjust their reservation values based on their observations. This hypothesis is merely speculation without

further research to test it. While numeric competency does not predict information demand, academic ability

metrics are positively correlated with its use, which is not terribly surprising given that it seems to be a well

performing strategy (see below).

Dependent Variable: Search Task Payoffs

Covariates Coefficients (Std. Error)

(1) (2) (3)

Information Demand Type 36.2192** 34.9088* 29.6689*

(17.3214) ( 18.1015 ) (17.4039)

Information Demand Heuristic 17.5541 17.1551 12.0834

(23.4486) ( 25.8476 ) (21.0770)

Learning 23.6106** 116.8047* 49.6895

(11.5433) ( 68.8906 ) (71.4848)

SNS Score - 20.1837** 11.4456

- ( 10.1061 ) (11.9451)

SMAP Numeracy Score - -0.9528 0.3558

- ( 0.0704 ) (.3271)

Learning* SMAP Numeracy Score - -0.4788** 0.7491

- ( 0.1503 ) (0.6669)

ACT Score - - 7.8939***

- - (2.2524)

Other Academic Controls No No Yes

Number of Subjects 81 81 61

Number of Observations 477 477 367

Note: *,**,*** indicates significance at the 10, 5, and 1 percent levels respectively.

Standard errors are shown in parentheses.

Table 5: OLS regression predicting payoffs for the search task in the learning treatment.
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Use of the heuristic within a given search spell does not predict a higher search payoff, but frequent use of

it across search spells does. Table 5 shows the results of a regression of payoffs from the search task against

numeracy and the categories described above.19 The learning treatment is positively correlated with payoffs

in the first regression, but this correlation disappears with the introduction of ability proxies, suggesting that

it is mainly driven by high ability subjects exploiting search spells with favorable distributions. Subjects

with more numeric ability are better able to use information in the learning treatment, and also tend to set

higher reservation values overall.20 The heuristic is not significantly correlated with payoffs from the search

task, but the information demander type is significant and positive. This difference likely comes from sub-

optimality of rigidly sticking to the heuristic. The information demander types set higher reservation values

even when they do not stick to the heuristic (an average of 446 as opposed to 390 for the non-demanders)

and they were less likely to stick to the heuristic if their first draw was quite low. Being classified as an

information demander type is only borderline significant when proxies for ability are introduced. Ability

proxies, especially academic data, are more predictive of payoffs than frequent use of the heuristic.21 The

heuristic is a reasonable strategy used by high ability subjects to deal with the uncertainty in the learning

treatment. However, if the information in the first draw is sufficiently compelling then the information

demanders recognize that it is optimal to deviate from the heuristic.

Result 2. Hypothesis 2 is not supported by the data. Many subjects do not use a one-step reservation

value strategy in the environment with learning. They instead use a heuristic where they separate the search

process into an “explore” stage and an “exploit” stage. While the use of the strategy itself is not significantly

predictive of payoffs, those subjects who regularly use the heuristic (i.e. the information demanders) perform

significantly better on the search task than subjects who did not.

This heuristic is quite similar to descriptions of real world search behavior. Blake, Nosko, and Tadelis

(2016) find that search patterns on eBay follow a pattern quite similar to the heuristic described in this paper.

Blake, Nosko, and Tadelis describe a “search funnel”, which is a concept from the marketing literature that

involves initial exploratory searches to get a sense of the products and prices available in the market, followed

by more directed precise search strings once this information has been gathered. Previous research has

assumed that the search funnel is a result of consumers’ imperfect knowledge of their own taste. According

19I use ordinary OLS here rather than a panel estimator as a Hausman test rejects use of random effects, and a fixed effects
estimator would cause the control variables (which are the variables of interest) to drop out. I therefore believe this
specification to be the most informative.

20There are some endogeneity concerns with the regression in Table 5 as subjective numeric ability is determined at least
partially by actual ability, so SMAP numeracy will partially determine the SNS Score. Three stage least squares analysis does
suggest that this is valid, but the qualitative results of the 3SLS regressions are essentially identical to those presented here
except that significant variables become more significant. I use the simple OLS here because it conveys the same information
in an easier to read format.

21The numeracy variables lose significance after the addition of academic controls, but, as I thank a reviewer for pointing
out, this is likely due to collinearity with the numeracy scores. A similar regression with academic controls and no numeracy
scores is qualitatively similar.
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to this framework consumers leave the information gathering stage once they have decided what it is they

want to buy. The similarity of the search pattern in my results absent any uncertainty about taste suggests

that the search funnel may also be a way for consumers to deal with the complexity of learning prices in an

unfamiliar market.

7 Feedback and under-search

In theory, risk averse preferences might be an explanation for the ubiquity of under-search. The reservation

value is determined by a comparison of a certain cost to a stochastic benefit, so a more risk averse searcher

should search less. In practice, the degree of risk aversion as measured by the Holt and Laury (2002) risk

preference elicitation was not significant for any regression, including regressions predicting the length of

search spell by subject, so it seems unlikely that this is the primary explanation.

One potential alternative explanation is the lack of negative feedback for suboptimal strategies. A subject

setting a constant reservation value of 350 in the full information treatment will still stop with a positive

payoff, and therefore may not realize that their reservation value is too low. An exception to this rule is a

situation where a subject draws a value near, but not above their reservation value. This event will make the

possibility of settling for a low reservation value more salient, and can cause subjects to revise their reservation

values upward. Table 6 describes a random effects probit analyzing the event that a subject’s reservation

Dependent Variable: Event that reservation value increases

Covariates Coefficients (Std. Error)

(1) (2) (3)

Distance -0.0036*** -0.0036*** -0.0030***

(0.0005) ( 0.0005 ) (0.0007)

Learning* Distance -0.0043*** -0.0045*** -0.0034***

(0.0006) ( 0.0006 ) (0.0007)

SMAP Numeracy Score - 0.0135** 0.0159

- ( 0.0063 ) (0.0125)

Learning* SMAP Numeracy Score - -0.0144* 0.0016

- ( 0.0076 ) (0.0113)

ACT Score - - -0.0969*

- - (0.0577)

Numeracy Measures No Yes Yes

Other Academic Controls No No Yes

Number of Subjects 69 69 53

Number of Observations 1,724 1,724 1,257

Note: *,**,*** indicates significance at the 10, 5, and 1 percent levels respectively.

Standard errors are shown in parentheses.

Table 6: Random effects probit predicting the probability of reservation value increasing. “Distance” = Last
Reservation Value - Last Observed Value.

value increases. Only 11% of the 1724 observed changes in reservation values were increases, nevertheless

the mechanism hypothesized above appears to work. I create the “Distance” variable by subtracting the

last observed value from the last reservation value for every search. It is significant and negative, indicating
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that the further the last observation is below its corresponding reservation value the less likely a subject is

to raise their subsequent reservation value. This effect is stronger in the learning treatment because of the

informational content in the observations. Receiving a draw close to the reservation value in the learning

treatment not only increases the salience of settling for a low draw, but also indicates that the subject may

be facing a favorable distribution. Subjects with higher ACT scores are somewhat less likely to raise their

reservation values, but this is in large part a mechanical effect because higher ability subjects generally set

higher reservation values in the first place.

Result 3. Hypothesis 3 is supported by the data. While other factors may explain the observed behavior,

lack of negative feedback for sub-optimal strategies appears to be a plausible explanation for the prevalence of

under-search and lack of inter-spell convergence toward the optimum value. When the possibility of settling

for a low draw is made salient subjects are likely to raise their reservation values in response.

If we look at feedback between search spells, the picture is slightly different. If a subject consistently stops

with values far above their reservation value, then this is feedback that their reservation values are too low.

However, subjects may also view this as positive feedback because they are receiving a high payoff relative

to their reservation value, which may act as reinforcement (in the psychological sense) and encourage them

to maintain or even lower their reservation values. As Charness and Levin (2005) establish, people have

difficulty updating when Bayesian rationality and reinforcement heuristics are in opposition. They show

that people tend to stick with strategies that yield positive payoffs even when the information conveyed by

that payoff suggests that they should change their action.

This experiment is a particularly interesting environment in which to explore this possibility because we

would expect any response in the full information treatment to be significantly dampened in the learning

treatment. A subject who receives a draw significantly above their reservation value in the full information

treatment could interpret it as positive reinforcement, but would likely just attribute it to a favorable

distribution in the learning treatment.

The data support this reinforcement hypothesis, but in a very specific way. As Figure 9 shows, the only

significant correlation between the final observation/final reservation value gap and the initial reservation

value in the following search spell is that subjects tend to lower their initial reservation value if their

observations are too close to their reservation values or if they find themselves exercising recall and settling

for a value below their stated reservation value. This is particularly true of high ability subjects.22

Similar to the update variable, I create an “initial update” variable which takes a value of 1 if the initial

reservation value is higher than the one in the previous period, 0 if it is the same, and -1 if it decreases.

22High ability is defined as having an effective ACT Composite over 28, or an average error on the numeracy task less than
25 if this data was not available. These values are the integers closest to the median.
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(a) Low Ability Subjects (b) High Ability Subjects

Figure 9: The difference between the final observation and the corresponding reservation value by whether
subjects lower, maintain, or raise the initial reservation value in the next search spell.

The “Difference” variable is the final observation minus the final reservation value in the previous search

spell. As Table 7 shows, this difference between the final reservation value and the final observation is

consistently the most important factor determining whether the initial reservation value changes relative to

the previous search spell. Ability controls and the number of searches in the previous search spell (which

controls for potential frustration with an unluckily long search spell) also play a role. Naive interpretation

of the coefficient for the difference variable would suggest that subjects who saw a value high above their

reservation are more likely to raise their initial reservation value in the following search spell while those

who stop with a low final observation relative to their reservation value are likely to lower their initial

reservation value in the following spell. However Figure 9 suggests that this correlation is driven entirely by

the latter effect, and even then only in the full information treatment. If I instead run a regression against a

dummy that takes a value of 1 whenever the reservation value increases then difference is never significant.23

Restricting the regression to the learning treatment similarly suppresses any significance. This behavior is

similar to Charness and Levin (2005), but instead of maintaining a strategy after positive feedback, subjects

are adjusting their strategy after negative feedback.

Result 4. Hypothesis 4 is partially supported by the data. Subjects appear to use a reinforcement heuristic

similar to that proposed by Charness and Levin (2005) when choosing their initial reservation values. Subjects

rarely become more persistent, but often adjust their reservation values to under-search further in response to

a search spell with an unfavorable result. This adjustment does not occur in the learning treatment, suggesting

that subjects do not transfer information across search spells as readily when the distribution is uncertain.

Based on the responses to the post-session questionnaires, it appears that subjects often equated low

23I omit these relatively uninteresting regressions for the sake of space.
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Dependent Variable: Change in Initial Reservation Value

Covariates Coefficients (Std. Error)

(1) (2) (3)

Difference 0.0013*** 0.0025*** 0.0026***

(0.0005) (0.0007) (0.0009)

Learning* Difference 0.0000 -0.0008 -0.0008

(0.0004) (0.0008) (0.0008)

High Ability*Difference - 0.0010* 0.0015*

- (0.0005) (0.0008)

Learning*High Ability*Difference - 0.0003 -0.0001

- (0.0004) (0.0005)

Previous Initial Reservation Value -0.0014 -0.0015 -0.0017**

(0.0009) (0.0009) (0.0007)

# Searches in previous spell -0.0242 0.0246 -0.0335*

(0.0148) (0.0154) (0.0173)

SMAP Numeracy Score - -0.0036*** -0.0057

- (0.0009) (0.0038)

SNS Score - 0.1145 0.2542***

- (0.0714) (0.0760)

ACT Score - - 0.0149

- - (0.0160)

Learning*ACT Score - - 0.0448**

- - (0.0192)

Academic Controls No No Yes

Upper Cutoff -0.1301 0.3126 1.4040

Lower Cutoff -1.3396 -0.901 0.1258

Number of Subjects 81 81 61

Number of Observations 805 805 610

Note: *,**,*** indicates significance at the 10, 5, and 1 percent levels respectively.

Standard errors are shown in parentheses.

Table 7: Random effects ordered probit regression predicting the direction of change in initial reservation
values.

reservation values with caution. It is therefore likely that the main mechanism behind this result is a desire

to increase caution in response to negative feedback. Given how important feedback and information design

has been shown to be for optimal auction behavior (e.g. Kagel, Harstad, and Levin (1987)), the design of

feedback in search environments seems like it may be fertile ground for further research.24

8 Distance from the theoretical optimum

In this section I compare subject’s behavior to that of a risk neutral rational Bayesian agent using a one-step

stopping rule. In the full information treatment this simply involves solving Equation (2) using the given

distribution. The process for the learning treatment is roughly equivalent, except that F (·) is a function of

the priors and posterior beliefs as a result of observing x. The rational agent sets a reservation value by

anticipating what the effects of observing x would be on their beliefs, then calculating the marginal benefit of

an additional search given those posteriors. Anticipating the effect of an observation on future beliefs is not

an easily intuited concept, so it is unlikely that most subjects are engaged in this level of forward thinking.

24See Jhunjhunwala (2018) for a more detailed exploration of the role feedback plays in search behavior.
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Figure 10: The percentage error in reservation values (compared to the theoretical optimum for a Bayesian
learner) by depth in search spell and treatment.

This complexity may explain why subjects’ reservation values are farther from the optimum in the learning

treatment than in the full information treatment (as shown in Figure 10).

The optimal reservation value in the full information treatment is 475, and the optimal initial reservation

value in the learning treatment is 593. Later optimal reservation values in the learning treatment depend

on the observations and therefore cannot be summarized simply. I calculate the percentage error using the

formula

Percentage Error =
Reservation Value−Optimal Value

Optimal Value
(5)

so a negative value indicates that subjects are setting a reservation value lower than the theoretical optimum.

It is apparent from Figure 10 that most subjects are setting reservation values below the optimum, and they

are farther below the optimum in the learning treatment. The amount of error decreases as subjects continue

to search, and this rate of decrease is faster with the learning treatment, such that the percentage errors are

roughly equivalent between treatments by the time subjects reach their 3rd search. Note that some of the

convergence to the optimal reservation value occurs because subjects who input low reservation values drop

out early. However, even with this fact we do see evidence for convergence toward the optimal value later

in search spells for the learning treatment. This convergence has a number of potential causes: First, as a

search spell continues, the optimal reservation value decreases. Subjects systematically set their reservation

values too low, so as the optimal value decreases it will mechanically approach stated values. Second, the

optimal reservation values decrease more quickly than actual reservation values, which could be caused by

subjects using a non-Bayesian updating process, or just updating more slowly. Finally, subjects are closer
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to the optimum when they know the distribution, and as they continue to search within a search spell in the

learning treatment they will eventually have a reasonably good estimate of the true distribution.25 For later

draws within a spell they are approximating the stationary search problem, which is much easier to solve.

(a) Learning last (b) Learning first

Figure 11: Mean absolute error for the first three reservation values of each search spell.

Result 5. The absolute value of error decreases as subjects continue to draw values within a given search

spell. This within-spell convergence between actual and optimum behavior is slightly stronger in the learning

treatment. This suggests that subjects do use information about the distribution to inform their strategies,

and that better information leads to a strategy closer to the theoretical optimum.

While there is strong intra-spell convergence, the convergence between spells is not nearly as strong, but

we can still see some interesting patterns. Figure 11 shows progression of the mean absolute error in the

first 3 searches of each spell.26 Formally, I define the variable M3Error by

M3Errork =
1

Nk ∗ 3

N∑
n=1

3∑
i=1

|Reservation Valuenki −Optimal Valuenki|

Where k is the kth search spell, Nk the number of subjects who searched at least 3 times within the kth

search spell, and i the depth in the search spell. I use the mean of the absolute value because it provides a

clearer interpretation of the graph (whether or not there is convergence to the optimum across search spells)

than simply using the mean error would. Just using the initial reservation value for each search spell yields

similar results.
25The average absolute value of error for the initial search is 85 in the full information treatment and 185 in the learning

treatment. A Mann-Whitney test for difference of behavior in the two treatments is significant at the 0.001% level. The single
most important determinant (as determined by OLS regression) of how close subjects’ elicited beliefs about the mean of the
distribution were to the true mean was the number of searches.

26I use mean absolute error rather than mean absolute percentage error here to give the reader a sense of scale for the
deviations from the theoretical optimum. The graphs with percentage error are nearly identical.
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We can see two trends in the error:

1. There is a downward trend in the error in the first few search spells of each session, regardless of the

order.

• While this may simply indicate that the experimental design should have allowed for more practice

spells at the beginning, it is noteworthy that we see some evidence for gradual mastery of the

environment in the full-information treatment. Subjects are told the distribution in the full

information treatment, but they need practice with the problem in order to understand how to

use this information.

2. Once this initial environmental learning curve is accounted for, there does not appear to be a strong

trend in the error across periods.

Regressions looking at the driving factors behind error largely replicate Result 5. Additional results, such

as a negative correlation between ability measures and error, are largely unsurprising, so I do not include

these regressions here.

9 High Cost Sessions

I ran additional sessions with a search cost of 25 rather than 5 to test the robustness of these findings. The

results are largely, though not entirely similar. The 72 subjects were again recruited from the Ohio State

ORSEE system with 42 seeing the learning treatment last and 30 seeing it first.27 The average payout was

$12.13 with a minimum of $6.45 and a maximum of $18.75. All tasks in the high cost sessions were identical

to the main part of the experiment aside from the difference in search cost.

27The imbalance in learning-last vs. learning-first here came from declining show-up rates by the time the learning-first
sessions were run.
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9.1 Results

Full Information Learning

Average Search Length 2.200 2.079

(0.098) (0.079)

Average Search Profits 415.461 388.737

(3.785) (6.511)

Table 8: Summary statistics for each treatment in the high cost sessions. Search profits are stated in
experimental currency units. Standard errors are shown in parentheses.

It is immediately obvious from Table 8 that there is much less differentiation in search behavior between

treatments in the high cost search environment. The average search length is actually shorter in the learning

treatment as opposed to longer, though this average is not significantly different from the average search

spell length in the high cost full information treatment.

(a) The kernel density of the normalized reservation
values in each treatment for the high cost sessions.
The initial searches have been dropped from this
graph.

(b) The normalized reservation values by depth in
search spell and treatment for the high cost sessions.
Note that the data starts at the 2nd search since the
first search is always 0 due to the normalization.

Figure 12: The kernel density and approximate paths of the normalized reservation values in the high cost
sessions.

Despite the similarity in search lengths between treatments, we can still see some evidence for the selection

effect. The kernel density of the normalized reservation values in Figure 12a still shows the same peak over

0 for the full information treatment and left skew for the learning treatment. This pattern is indicative of

learning causing reservation values to decline, though the difference is much less striking than in the low cost

data. In Figure 12b we can see a weak decline as subjects get further into their search spells in the learning
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treatment. Repetition of the regression in Table 2 yields no significant coefficients. Based on the graphical

evidence above I believe that this does not demonstrate absence of a decline but instead comes from the

increased search cost diminishing the effect size.

This belief is reinforced by examining the results of an ordered probit similar to Table 3 looking at the

factors influencing the direction in which subjects update their reservation values in the high cost sessions.

We can see in Table 9 that the previous observation is still one of the most influential factors in the learning

treatment. The informational content of the observations in the learning treatment is still playing a significant

role. There is a negative correlation between the previous observation and the direction of update in the

full information treatment, which would suggest that subjects are lowering (raising) their reservation values

after observing high (low) values. However the correlation is only borderline significant when I restrict the

regression to search spells where subjects did not exercise recall, suggesting that the correlation is partly

driven by frequent use of recall when the observed value is close to the stated reservation value. In other

words, subjects appear to be engaging in satisficing behavior in the face of higher search costs (See Caplin,

Dean, and Martin (2011) for a discussion of search and satisficing behavior).

Dependent Variable: Change in Reservation Value

Covariates Coefficients (Std. Error)

(1) (2)

Previous Observation -0.0015** -0.0016**

( 0.0006 ) ( 0.0006 )

Learning* Previous Observation 0.0029*** 0.0033***

( 0.0007 ) (0.0008)

SMAP Numeracy Score 0.0070 0.0055

( 0.0053 ) (0.0063)

SNS Score 0.3274*** 0.4249***

( 0.1105 ) (0.1271)

Learning*SNS Score -0.5170*** -0.5710***

( 0.1882 ) (0.2107)

# of Searches 0.0432 0.0332

( 0.0314 ) (0.0362)

Learning * # of Searches 0.1210** 0.1376***

( 0.0473 ) (0.0519)

Time -0.0007 0.0000

( 0.0027 ) (0.0026)

Learning*Time -0.0033 -0.0058

( 0.0045 ) (0.0055)

GPA - -0.2496*

- (0.1355)

Other Academic Controls No Yes

Upper Cutoff 2.2706 2.5359

Lower Cutoff 1.1296 1.5507

Number of Subjects 63 47

Number of Observations 841 675

Note: *,**,*** indicates significance at the 10, 5, and 1 percent levels respectively.

Standard errors are shown in parentheses.

Table 9: Random effects ordered probit regression predicting the direction of change in reservation values in
the high cost sessions.

While many subjects described strategies similar to the information demand heuristic, only 4 out of the
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72 high cost subjects satisfied the definition of information demander compared to 25 out of 81 in the low

cost sessions. While this is too few subjects for any statistical analysis to be meaningful, the difference in

use of the heuristic is itself an interesting result. The information gathering stage of the heuristic involves

exchanging search costs for additional information, and it appears that the additional expense in the high

cost session made this information gathering stage too expensive for most subjects.

Result 6. The main results from the low-cost treatments are somewhat robust to a higher cost environment.

However, subjects are more prone to satisficing behavior when the search cost is larger. Additionally, the

high cost of gathering information reduced use of the information demand heuristic.

10 Conclusion

Search with learning about the distribution has been under-explored in the experimental literature. For this

experiment I restrict the setting to learning through observations from the distribution where the priors have

overlapping support. This environment is quite common in the theoretical literature, and has some of the

most consistent predictions. Namely, that searchers will use a one-step stopping rule a la Weitzman (1979),

and that the reservation value for this stopping rule will monotonically decline because any observation high

enough to cause an increase in the reservation value will also be above that reservation value. I show that

this selection effect does indeed hold for experimental subjects in a simulated search environment. But I

also have evidence that they may not be using a one-step stopping rule in the learning treatment.28 Instead,

many subjects seem to have a desire to learn about the distribution before stopping. The complexity and

unintuitive nature of the optimal strategy may make this heuristic optimal in real world situations with

limited computational power. Additionally, this heuristic may be closer to being unboundedly optimal in

situations where it is possible that a searcher may encounter the same distribution again because additional

information about the distribution would carry over to the next search spell. Subjects consistently under-

search, and the persistence of this behavior appears to be at least in part due to the unintuitive nature of

the feedback which the search game provides. Given Jhunjhunwala’s (2018) result that under-searching can

be counteracted by the mere prospect of additional feedback, this area seems like a fruitful avenue for future

research.

28Given that the elicitation method assumes a one-step strategy I had intended to run an additional treatment as
suggested by a referee to see if behavior is broadly similar in a setting without it. Unfortunately, because of the 2020 Covid-19
outbreak, the Ohio State University laboratory suspended experiments during the spring of 2020 and so I was not able to run
these additional sessions before leaving that institution.
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A Instructions

A.1 Learning Last Experimental Instructions

Welcome to our decision making study! Thank you for your participation. Please turn off and put away

your cell phones, and please refrain from talking to other participants during the study. You will receive a

payment for your time based on the results of the experiment. The experiment should take approximately

1 hour. The average payment will be about $17 but your earnings will depend on your decisions and on

elements of chance.

A.1.1 Drawing Values

Imagine you are searching for a product online. When you find what you’re looking for, you have the option

of taking that deal immediately, or continuing to search. Searching takes time and effort, but there’s always

the possibility of finding an item that you like more or finding the same item at a lower price. We will be

simulating this search process by having you draw values from a random distribution. You will begin by

entering a “minimum acceptable value” and making a draw from the distribution. This minimum acceptable

value represents the deal with the lowest payoff that is still high enough you would stop searching after
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finding it. Each draw costs 5 experimental currency units, and if you get a draw above your minimum

acceptable value then you will be done with that search spell and your payoff will be the value you drew

minus the cost of the draw.

If your draw is below your minimum acceptable value, then you will have two options, you can either

accept the highest value you have observed so far at a cost of 5 experimental currency units, or enter a

new minimum acceptable value (which can be higher, lower, or equal to your previous minimum acceptable

value) and draw a new value. If you put a low minimum acceptable value, then you are likely to get a value

above this cutoff in your next draw, but you may end up settling for a very low payoff. If your minimum

acceptable value is very high, then you won’t stop after drawing a lower value, but it may take a lot of draws

to get a value that high.

The distribution you will be drawing from is a “censored normal distribution” with a low end of 0, a

high end of 700 and a mean of 350. That means that every number will be between 0 and 700 but numbers

closer to 350 are more likely than numbers near the end. For example, if you input a minimum acceptable

value of 300, then you will have a 70% probability of drawing a value above that number, but the probability

of drawing a value above 400 is 30%. You will be shown a graph with 10,000 random draws from this

distribution and your draws will be displayed on this graph as red dots on the axis. You will be repeating

part 1 seven times. The first two times will be for practice and then your payment for this section will be

randomly selected from among the payoffs in the other five periods.

A.1.2 Drawing Values With an Unknown Distribution

This task will be similar to the first task, but you will be drawing values from a normal with an unknown

mean. The computer will randomly determine a number anywhere between 150 and 550 to be the mean of

the distribution at the start of every period, but you will not know what that mean is. Each number between

150 and 550 is equally likely to be chosen for the mean. Once the computer has determined the mean you

will choose a minimum acceptable value and draw values just like in the last section. It is still possible to

draw every number between 0 and 700, and numbers closer to the mean are still more likely. For example,
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if the mean is 200, then you will be more likely to draw numbers close to 200 but it is still possible to draw

values close to 700.

Once you have finished drawing values, you will be asked to guess the mean of the distribution for that

search spell. If your guess is within 100 units of the actual value, then 100 minus the amount by which your

guess differs from the actual value will be added to your payoff for that period. This section will be repeated

seven times just as before, and the computer will draw a new number for the mean of the distribution at the

beginning of each period. The first two periods will be for practice again and then your payment for this

section will again be randomly selected from among the payoffs in the other five periods.

A.1.3 Number line task

Once you have finished drawing values, we will ask you to complete a number line task. You will be shown

a number line ranging between 0 and 1000 and a sequence of numbers. Your task for this part of the

experiment is to use your mouse to drag the diamond as close to where you think each number lies on the

line as possible. We will pick one number at random out of the sequence and if the position of the diamond

is within 100 units of the number shown, then you will be awarded a number of experimental units equal to

100 minus the amount by which your placement differs from the number.

A.1.4 Lottery Choice

The next part of the experiment will involve choosing between pairs of lotteries. Lottery B on the right side

has a probability of giving a much higher payout than lottery A on the left, but also has a possibility of

giving a much smaller payout. The lotteries have an increasing probability of giving the high payout, and we

will ask you to pick the minimum probability of the high payout at which you would prefer the high variance

of lottery B to the low variance of lottery A. Once you choose that minimum probability, the program will

automatically select lottery B for all higher probabilities of receiving the high payout. We will be selecting

one of your chosen lotteries at random to determine your payment for this part of the experiment.

A.1.5 Survey

The last part of the experiment consists of a few questions and a brief survey assessing how you deal with

numeric information. In order to ensure accuracy of this information we ask that you be especially sure not

to use any calculators in this part of the experiment. The answers to these questions will not affect your

payment.
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A.1.6 Calculating Payment

The computer will randomly select your earnings from one of the five repetitions after the practice periods

from part 1 and one of the five repetitions after the practice periods from part 2, then add these to your

earnings from parts 3 and 4 to determine your total payment. Experimental currency units will be converted

to dollars at a rate of 1ECU to 0.014USD.

A.1.7 Questionnaire

Once you have written down your payment the experiment will conclude with a brief questionnaire. After

you have completed the questionnaire the experimenter will call out your name and you can collect your

payment.
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A.1.8 Practice Questions

Please fill in the blanks in the following examples. This is just to get you used to the type of thinking you will

be doing in the experiment. Your answers to these questions will not affect your payment or your standing

with the experimenter.

Example 1: You have drawn 3 values from the distribution in part 1

1. If your current highest value is 180 and you decide to accept this value, then you will get a payout of

[ ] for this period.

2. If you decide to draw again with a minimum acceptable value of 250 and you draw 320, then your final

payout for this period will be [ ]

Example 2: You have drawn 7 times from the distribution in part 2

1. If your current highest value is 120 and you decide to accept this value, then you will get a payout of

[ ] for this period.

2. If you decide to draw again with a minimum acceptable value of 400 and you draw 480, then your final

payout for this period will be [ ]

A.2 Learning First Instructions

Welcome to our decision making study! Thank you for your participation. Please turn off and put away

your cell phones, and please refrain from talking to other participants during the study. You will receive a

payment for your time based on the results of the experiment. The experiment should take approximately

1 hour. The average payment will be about $17 but your earnings will depend on your decisions and on

elements of chance.

A.2.1 Drawing Values With an Unknown Distribution

Imagine you are searching for a product online. When you find what you’re looking for, you have the option

of taking that deal immediately, or continuing to search. Searching takes time and effort, but there’s always

the possibility of finding an item that you like more or finding the same item at a lower price. We will be

simulating this search process by having you draw values from a random distribution. You will begin by

entering a “minimum acceptable value” and making a draw from the distribution. This minimum acceptable

value represents the deal with the lowest payoff that is still high enough you would stop searching after
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finding it. Each draw costs 5 experimental currency units, and if you get a draw above your minimum

acceptable value then you will be done with that search spell and your payoff will be the value you drew

minus the cost of the draw.

If your draw is below your minimum acceptable value, then you will have two options, you can either

accept the highest value you have observed so far at a cost of 5 experimental currency units, or enter a

new minimum acceptable value (which can be higher, lower, or equal to your previous minimum acceptable

value) and draw a new value. If you put a low minimum acceptable value, then you are likely to get a value

above this cutoff in your next draw, but you may end up settling for a very low payoff. If your minimum

acceptable value is very high, then you won’t stop after drawing a lower value, but it may take a lot of draws

to get a value that high.

The distribution you will be drawing from is a “censored normal distribution” with a low end of 0, a

high end of 700 and an unknown mean. This means that it is possible to draw every number between 0 and

700, but numbers closer to the mean are more likely.

As an illustrative example: If you input a minimum acceptable value of 300 and the mean is 350, then

you will have a 70% probability of drawing a value above that number, but the probability of drawing a

value above 400 is 30%. On the other hand, if the mean is 200, then you would only have a 16% probability

of drawing a value above 300, but it is still possible to draw values close to 700. The computer will randomly

determine a number anywhere between 150 and 550 to be the mean of the distribution at the start of every

period, but you will not know what that mean is. Each number between 150 and 550 is equally likely to be

chosen for the mean. Once the computer has determined the mean you will choose a minimum acceptable

value and begin drawing values. You will be shown the values you draw as red dots on a number line as in

the picture below.

Once you have finished drawing values, you will be asked to guess the mean of the distribution for that

search spell. If your guess is within 100 units of the actual value, then 100 minus the amount by which your

guess differs from the actual value will be added to your payoff for that period. This section will be repeated

seven times, and the computer will draw a new number for the mean of the distribution at the beginning of
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each period. The first two times will be for practice and then your payment for this section will be randomly

selected from among the payoffs in the other five periods.

A.2.2 Drawing Values With a Known Distribution

This task will be similar to the first task, but you will be drawing values from a censored normal distribution

with a known mean of 350. That means that every number will be between 0 and 700 but numbers closer

to 350 are more likely than numbers near the end. You will be shown a graph with 10,000 random draws

from this distribution and your draws will be displayed on this graph as red dots on the axis. The picture

above shows an example of what this graph will look like. Since you know the distribution in this part of

the experiment you will not be asked to guess the mean. You will be repeating this part seven times just as

before. The first two periods will again be for practice and then your payment for this section will again be

randomly selected from among the payoffs in the other five periods.

A.2.3 Number line task

Once you have finished drawing values, we will ask you to complete a number line task. You will be shown

a number line ranging between 0 and 1000 and a sequence of numbers. Your task for this part of the

experiment is to use your mouse to drag the diamond as close to where you think each number lies on the

line as possible. We will pick one number at random out of the sequence and if the position of the diamond

is within 100 units of the number shown, then you will be awarded a number of experimental units equal to

100 minus the amount by which your placement differs from the number.

A.2.4 Lottery Choice

The next part of the experiment will involve choosing between pairs of lotteries. Lottery B on the right side

has a probability of giving a much higher payout than lottery A on the left, but also has a possibility of

giving a much smaller payout. The lotteries have an increasing probability of giving the high payout, and we

will ask you to pick the minimum probability of the high payout at which you would prefer the high variance

of lottery B to the low variance of lottery A. Once you choose that minimum probability, the program will

automatically select lottery B for all higher probabilities of receiving the high payout. We will be selecting

one of your chosen lotteries at random to determine your payment for this part of the experiment.
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A.2.5 Survey

The last part of the experiment consists of a few questions and a brief survey assessing how you deal with

numeric information. In order to ensure accuracy of this information we ask that you be especially sure not

to use any calculators in this part of the experiment. The answers to these questions will not affect your

payment.

A.2.6 Calculating Payment

The computer will randomly select your earnings from one of the five repetitions after the practice periods

from part 1 and one of the five repetitions after the practice periods from part 2, then add these to your

earnings from parts 3 and 4 to determine your total payment. Experimental currency units will be converted

to dollars at a rate of 1ECU to 0.014USD.

A.2.7 Questionnaire

Once you have written down your payment the experiment will conclude with a brief questionnaire. After

you have completed the questionnaire the experimenter will call out your name and you can collect your

payment.
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A.2.8 Practice Questions

Please fill in the blanks in the following examples. This is just to get you used to the type of thinking you will

be doing in the experiment. Your answers to these questions will not affect your payment or your standing

with the experimenter.

Example 1: You have drawn 3 values from the distribution in part 1

1. If your current highest value is 180 and you decide to accept this value, then you will get a payout of

[ ] for this period.

2. If you decide to draw again with a minimum acceptable value of 250 and you draw 320, then your final

payout for this period will be [ ]

Example 2: You have drawn 7 times from the distribution in part 2

1. If your current highest value is 120 and you decide to accept this value, then you will get a payout of

[ ] for this period.

2. If you decide to draw again with a minimum acceptable value of 400 and you draw 480, then your final

payout for this period will be [ ]
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