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A Extra details: monopoly benchmark (Section 4)
Consider the monopoly model in Section 3. An alternative formulation for the utility realization in

(1) is to allow for idiosyncratic match value realizations whenever a match in taste occurs à la Eliaz and
Spiegler (2011) and Yang (2013). Specifically, rewrite (1) as

uij =
{

yij + u (λi)
0

with probability λi
with probability 1 − λi

}
,

where yij ∈ [0, ymax] is a pair-ij-specific idiosyncratic factor that is i.i.d. according to a log-concave CDF
function F . Notice that if ymax → 0 so that CDF F is degenerate, then this formulation nests (1) as a
special case.

The realization yij is privately observed only by the consumer and only after inspection. In particular,
if one goes with the microfoundation presented in Section A, then it means that the platform never observes
the realizations of yij , thus preventing the correlation structure in the consumer search sequence. Therefore,
the consumer search environment remains stationarity. Moreover, platforms are unable to condition its
recommendation based on the realization of yij , and so the recommendation (2) remains applicable and
consistent with the Pandora’s rule (Weitzman 1979).

Then, we obtain the following equivalence of Lemma 1:

Lemma A.1. (Hybrid mode subgame). For each given (r, τ), the equilibrium of the consumer-creator
subgame is:

1. Each creator i joins both portals of the platform and sets equilibrium design

λ∗ = arg max
λi∈[0,1]

{
D

(
ũ(λi)
1 − r

; ũ(λ∗)
1 − r

)
× (1 − F (ȳ + u(λ∗) − u (λi))) × (a+ (1 − τ)v (λi))λi

}
(A.1)

where ũ(λi) is the search reservation value used by platform for recommendations:

ũ(λi) ≡ u(λi) − s

λi
;

whereas ȳ is the on-equilibrium-path search reservation value used by consumers when deciding
whether to stop: ∫ xmax

max{ȳ,0}
(y − ȳ)dF (y) = s

λ∗ .

2. Each consumer believes that all creators adopt strategy λ∗ in (6), and initiates search if and only if
x ≤ ȳ+ ũ(λ∗), and does so through the discovery portal (follows the recommendation in every step of
search). The mass of consumers who search is G (ȳ + ũ(λ∗)).

3. Each consumer j stops searching and becomes a viewer of the creator i if and only if (i) there is a
match in taste (so uij ̸= 0), and (ii) the realized yij satisfies

yij + u (λi) ≥ ȳ + u(λ∗). (A.2)
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Proof. Conditioned on consumer search stopping rule, as represented by cutoff x̄, the equilibrium construc-
tion follows directly from Lemma 1. Meanwhile, the proof of consumer search stopping rule is a direct
extension of Wolinsky (1986), as noted in Proposition 1 of Eliaz and Spiegler.

Observe that if ymax → 0, then ȳ = − s
λ∗ , and so 1 − F (x̄+ u(λ∗) − u (λi)) = 1 in (A.1). In this case,

(A.2) always holds and so Lemma A.1 reduces to Lemma 1. Hence, an interpretation of the model in
Section 3 is it represents a limiting case where the idiosyncratic search component of consumer utility, i.e.,
yij , is sufficiently homogeneous so that consumers stop searching at the first match in taste.

More generally, the additional component 1 − F (ȳ + u(λ∗) − u (λi)) < 1 in (A.1) induces equilibrium
design that is less broad compared to the one in the main text (6). Intuitively, the additional component
1 − F (ȳ + u(λ∗) − u (λi)) means that creators have an incentive to lower broadness in order to increase the
likelihood of retaining positively-matched consumers.

Nonetheless, the equilibrium outcome in Lemma A.1 is conceptually the same as Lemma 1. In particular,
the comparative statics in Proposition 1 on the effects of platform decisions r and τ remain valid. In light
of this, we stick with the more tractable formulation in Section 3 in order to operationalize the analysis of
platform decisions.

Lemma A.2. If a′(λi)
a(λi) ≥ v′(λi)

v(λi) holds for all λi, then λ∗ is increasing in τ .

Proof. Following the same steps as the proof of Lemma 1, denote λ∗ as the solution to FOC

0 = 1
λ∗ + 1

1 − r

D′

D

∂ũi
∂λi

+ a′(λ∗) + (1 − τ)v′(λ∗)
a(λ∗) + (1 − τ)v(λ∗) .

By total differentiation, the signs of ∂λ∗/∂τ is the same as

∂

∂τ

(
a′(λ∗) + (1 − τ)v′(λ∗)
a(λ∗) + (1 − τ)v(λ∗)

)
= a′(λ∗)v(λ∗) − a(λ∗)v′(λ∗)

(a+ (1 − τ)v(λ∗))2 ≥ 0

if the stated condition holds.

B Extra details: competing platforms (Section 5)

B.1 Sequential business model choice

Consider the complete multihoming competition model in Section 5 but with sequential business mode
decisions. Platform 1 (first mover) decides on a business model first before Platform 2 (follower) and
then the rest of the game proceeds as before. Using Proposition 4 and taking into account the backward
induction logic, the following result is immediate:

Proposition B.1. Suppose platforms make sequential choices of business model with P1 being the first
mover, there exists a threshold Aseq ≤ AMH such that:33

• If A ≥ AMH , then Platform 1 optimally chooses H and induces P2 = D.

• If A ∈ (Aseq, AMH), then Platform 1 optimally chooses D and induces P2 = M .

• If A ≤ Aseq, then Platform 1 optimally chooses M and induces P2 = D.
33If Aseq = AMH , then (Aseq, AMH) is an empty set. A simple sufficient condition for Aseq < AMH is v(0) being

sufficiently small relative to A.
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Proof. (Proposition B.1). When A ≥ AMH , the backward induction logic and the best response of
the follower (Proposition 4) imply Platform 1 essentially compares between Π∗

1(M,D), Π∗
1(H,D), and

Π∗
1(D,H). Then, Proposition 3 implies Π∗

1(H,D) > Π∗
1(D,H), whereas the definition of AMH implies

Π∗
1(H,D) ≥ Π∗

1(M,D).
When A < AMH , we first rule out P1 = H being optimal. To see this, if A ∈ [A′

MH , AMH), then
P2 = D in response, and the definition of AMH implies Π∗

1(H,D) < Π∗
1(M,D); if A < A′

MH in response,
then P2 = M , and Proposition 4 implies Π∗

1(H,M) < Π∗
1(D,M) in this case. Therefore, Platform 1

essentially compares between Π∗
1(M,D) and Π∗

1(D,M) (recall A < AMH means P2 = M in response to
P1 = D). Recall

Π∗
1(D,M) = G(ũ(λ∗(r̄, τDM ))A− C

Π∗
1(M,D) = G(ũ(λ∗(r̄, τMD))τMDv(λ∗)

Notice τDM = τMD is chosen by the platform with Pl = M and so it is independent of A, implying that
Π∗

1(D,M) − Π∗
1(M,D) is monotone increasing in A.34 If Π∗

1(D,M) < Π∗
1(M,D) for all A < AMH , then we

define Aseq = AMH . Otherwise, define Aseq as the solution to Π∗
1(D,M) = Π∗

1(M,D), which exists and is
unique by the intermediate value theorem.

Proposition B.1 says that the first mover monopolizes the membership portal market by operating an
membership portal preemptively if ad profitability A is either very large or very small. For some parameter
configurations, there exists an intermediate region of A such that Π∗

1(M,D) < Π∗
1(D,M), in which case

the first mover does not monopolize the membership portal market as it earns a higher profit by being the
sole discovery portal.

B.2 Differentiated membership portals

Consider the complete multihoming competition model in Section 5 but change it such that creators
now view membership portals as being horizontally differentiated. All timing is identical to the model in
Section 5. Note this extension involves potential asymmetric design on the equilibrium path, similar to the
extension in Section E. For tractability, we focus on the logit recommendation form in 5 and focus on the
case where G is sufficiently inelastic throughout.

We adopt the content differentiation scheme of Wang and Wright (2020). Whenever two membership
portals coexist, half of creators join each membership portal as a “default”. If they consider switching to
the alternative portal they face a switching cost σz where z ∈ [z, z̄] is distributed according to CDF Q

whereas σ ∈ (0,∞] represents the degree of differentiation between platforms. Clearly, σ → 0 recovers the
model in Section 5.

In what follows, we focus on σ → ∞, i.e., membership portals are local monopolies. Likewise, if there
is only one membership portal, all creators join the sole membership portal as the “default” and face no
switching cost (as there is no where else to switch to). As such, the creator’s maximization problem is
essentially unchanged after the participation step.

Consider any subgame where two platforms operate two coexisting membership portals. Let the set of
creators who joins the membership portal of platform 1 be S1 (all these creators choose λ∗

1 = λ∗ (r, τ1))
and the set of sellers who join the membership portal of platform 2 be S2 (all these creators optimally
choose λ∗

2 = λ∗ (r, τ2)), where r = max{r1, r2}, similar to Lemma 2. By the local monopolies assumption,
creators split themselves across membership portals evenly so |S1| = |S2| = 1/2. Then, the total probability

34Recall the alphabetical subscript in τ denotes the mode choices P1 and P2 in successive order.
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of creators in set Sl (l = 1, 2) being recommended is

Dl =
1
2 exp

(
ũ(λ∗

l )
1−r

)
1
2
∑
l=1,2 exp

(
ũ(λ∗

l
)

1−r

) .
Using the terminologies developed in Section E, let F̃ be the (recommendation-weighted) effective distribution
of content design, which is a binary distribution. The corresponding probability mass function is

f̃(z) = D1 if z = λ∗
1

f̃(z) = D2 if z = λ∗
2

(B.1)

which is a function of (r, τ1, τ2) via λ∗
1 = λ∗ (r, τ1) and λ∗

2 = λ∗ (r, τ2). Following Lemma E.2, we know for
given r on the equilibrium path, each consumer believes that the distribution of design is described by
CDF F̃ , and initiates search if and only if

x ≤ ũ12(r, λ∗
1, λ

∗
2)

≡ ũ(λ∗
1)D1 + ũ(λ∗

2)D2.

and does so through the discovery portal (follows the recommendation in every step of search). Upon
observing a positive match value with a creator, the consumer stops searching and becomes a viewer of the
creator. Before proceeding, it is useful to note that

∂Dl

∂τl
> 0

due to assumption s > s̄max.
Clearly, the extension does not affect the maximization problem faced by a platform l if it chooses

Pl = D. As for Pl = M and H. The platform’s tradeoff is similar to the monopoly problem, except that
the addition of the rival membership portal means that platform l must now additionally take into account
the effect of changing λ∗

l on Dl (the probability of “its creators” being recommended instead of “the rival’s
creators”). Formally,35

ΠM (τl) = G(ũ12)Dlτlv(λ∗
l ) if P−l ∈ {M,H}

and ΠH(rl, τl) can similarly be rewritten:

ΠH(rl, τl) = G(ũ12) (Dlτlv(λ∗
l ) +A) if P−l = M

= G(ũ12)
(
Dlτlv(λ∗

l ) + A

2

)
if P−l = H

Observe that in both expression of ΠM and ΠH , τl = 0 is never optimal because G being sufficiently
inelastic means

∂ΠM

∂τl
|τl=0 = ∂ΠH

∂τl
|τl=0 = G(ũ12)Dlv(λ∗

l ) > 0

Therefore, in any equilibrium with two coexisting membership portals, we must have τ1 > 0 and τ2 > 0.
Meanwhile, similar to the proof of Proposition 4 we know Bertrand competition between two homoge-

neous discovery portal components (whenever they coexist) to attract consumer search (and to earn the
platform advertising revenue A > 0) implies r1 = r2 = r̄. There is no incentive to deviate by lowering rl
because that doing so does not affect creators’ content design and hence does not affect consumers’ search
decisions.

35Implicitly, we assume throughout that all the required second order conditions hold. In earlier versions, we
also characterized sufficient conditions for ΠM (τl) and ΠH(rl, τl) to be concave with respect to τl. The details are
available from the authors upon request.
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We now consider the choice of business models as a best response to another platform’s choice of
business model. Similar to the analysis in the proofs in Section 5, we first prove that Pl = D is never a
best response for any P−l ∈ {M,D,H}. generality.

Lemma B.1. If G is sufficiently inelastic , then Pl = D is never a best response.

Proof. We let platform indices l = 2 and −l = 1 without loss of generality. We want to show P2 = D

is always dominated by P2 = H. Suppose P1 = M , and let (τ1,MH , τ2,MH) and rMH denote platforms’
equilibrium commissions and sensitivity when (P1, P2) = (M,H). Using the fact that G is sufficiently
inelastic, that D2 > 0, and that τ2 > 0 in any configurations of business models, we have

Π∗
2,MH = G× (A+D2τ2,MHv(λ∗(rMH , τ2,MH))) − C

> G×A− C = Π∗
2,MD.

The same argument applies to P1 = D and P1 = H.

To see why Pl = D is never a best response in this setup, consider introducing Pl ∈ {H,M} when
P−l = M (same intuition for P−l = H). Doing so has two effects on commissions. First, the coexistence of
two membership portals (each with loyal creators) creates competition for recommendations on the part of
the platforms because platforms earn commission revenue only if their loyal creators are recommended.
This incentivizes platforms to increase τ to induce content design that appeals to the recommendation
algorithm. Second, the coexistence of two membership portals pushes commissions down because consumers’
participation decision is based on the average reservation value ũ12 in the market, meaning that any unilateral
changes in τl by platform l have a smaller downside (relative to the monopoly case) because creators that
are loyal to platform −l respond only to τ−l. If G is sufficiently inelastic, the first effect dominates and the
equilibrium commissions τ become higher compared to when there’s only one membership portal. This
shuts down the “negative spillover” discussed in 5 (i.e., when competition between membership portals
reduces broadness).

Given that Pl = D and/or P−l = D can never be part of the equilibrium, in the best-response analysis
below we focus on the remain two modes: Pl, P−l ∈ {M,H}

Proposition B.2. If G is sufficiently inelastic, there are thresholds Ahori ≥ A′
hori ≥ 0 such that:

• If P−l = M , Platform l optimally chooses H if A ≥ Ahori and chooses M if A ≤ Ahori;

• If P−l = H, Platform l optimally chooses H if A ≥ A′
hori and chooses M if A ≤ A′

hori;

Proof. We let platform indices l = 2 and −l = 1 without loss of generality. Consider P1 = M . We want to
show Π2,MH − Π2,MM is monotone increasing in A where

Π2,MH = G (ũ12(rMH , λ
∗(rMH , τ1,MH), λ∗(rMH , τ2,MH))) × (A+D2τ2,MHv(λ∗(rMH , τ2,MH))) − C

Π2,MM = G (ũ(λ∗(−∞, τMM )) × 1
2τMMv(λ∗(−∞, τMM )).

Obviously, Π2,MM is independent of A. Meanwhile, if G is sufficiently inelastic, then the duplet
(τ1,MH , τ2,MH) is pinned down by the following FOCs:

1 + τ1,MH

(
dD1

dτ1

1
D1

+ v′(λ∗
1(rMH , τ1,MH))

v(λ∗
1(rMH , τ1,MH))

∂λ∗
1

∂τ1

)
= 0

1 + τ2,MH

(
dD2

dτ2

1
D2

+ v′(λ∗
2(rMH , τ2,MH))

v(λ∗
2(rMH , τ2,MH))

∂λ∗
2

∂τ2

)
= 0

which are independent of A. Consequently, Π2,MH is monotone increasing in A by the envelope theorem.
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Next, when P1 = H. We want to show Π2,HH − Π2,HM is monotone increasing in A, where

Π2,HH = G (ũ(λ∗(r̄, τHH)) ×
(
A

2 + 1
2τHHv(λ∗(r̄, τHH))

)
− C

Π2,HM = (ũ12(rMH , λ
∗(rMH , τ1,MH), λ∗(rMH , τ2,MH))) ×D2τ2,MHv(λ∗(rMH , τ2,MH)).

Again, if G is sufficiently inelastic, the FOCs associated with (τ1,MH , τ2,MH) and τHH are independent of
A. Hence, Π2,HH is increasing in A while Π2,HM is independent of A, as required.

Indeed, if G is fixed, we can solve for the cutoffs Ahori and A′
hori explicitly, and show that A′

hori is not
always higher than Ahori.

The best responses from Proposition B.2 lead immediately to the following result that is reminiscent of
Proposition 7.

Corollary B.1. Suppose G is sufficiently inelastic. In the equilibrium of the overall game:36

• If A ≥ A′
hori, then both platforms operate in hybrid mode.

• If A ∈ (Ahori, A′
hori), one platform operates in pure membership mode and the other platform operates

in hybrid mode.

• If A ≤ Ahori, then both platforms operate in pure membership mode.

C Extension: surplus and welfare implications
We include the proof of Corollary 3 here. Interested readers can find a more general exploration of

welfare in this model in Section C.1.

Proof. (Corollary 3) Recall s > s̄max so that ũ(λi) is increasing, and from Proposition 1 λ∗
M ≤ λ∗

H ≤ λ∗
D.

The result follows. Creator surplus in the various modes is given by the following equations

PSD = G(ũ(λ∗
D))a

PSH = G(ũ(λ∗
H))(a+ (1 − τ∗

H)v(λ∗
H))

PSM = G(ũ0(λ∗
M ))(a+ (1 − τ∗

M )v(λ∗
M )).

Trivially a+ (1 − τ∗
H)v(λ∗(r∗

H , τ
∗
H)) > a, so creators’ per-viewer revenue is greater with a hybrid platform

than under pure discovery. However, λ∗
H ≤ λ∗

D implies G(ũ(λ∗
D)) ≥ G(ũ(λ∗

H)) so the mass of viewers is
lower with a hybrid platform. However, from (8) as maxλi |v

′(λi)
v(λi) | → 0, it must be the case that λ∗

D → λ∗
H ,

so if maxλi |v
′(λi)
v(λi) | is not too large then then the reduction in viewership must be outweighed by the increase

in revenue because ũ(λ∗) cannot have changed significantly. In that case PSH > PSD. To show that
PSD ≥ PSM for large n0, we note that as ũ0(.) is decreasing in n0 whereas ũ(.) does not depend on n0,
there must be n0 sufficiently large that a · [G(ũ(λ∗

D)) −G(ũ0(λ∗
M ))] > v(λ∗

D)G(ũ(λ∗
D)). If this inequality

holds then PSD ≥ PSM , regardless of the value of τ∗
M . More generally, from the FOC definition of τ∗

M :

G (ũ0 (λ∗))
g (ũ0 (λ∗))

(
v(λ∗) + v′(λ∗)τ ∂λ

∗

∂τ

)
+ (τv(λ∗)) ∂ũ0

∂λi

∂λ∗

∂τ
= 0.

∂2ũ0
∂λi∂n0

> 0, so τ∗
M is increasing in n0, meaning that the intensive revenue gain from having a membership

portal is diminished even further as n0 increases.
36Note that it is possible that Ahori ≥ A′

hori, in which case we have coexistence of two types of equilibria:
(Pl, P−l) = (H, H) and (M, M).
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The MATLAB code used to generate Figures 2 and 3 are available from the authors upon request.

C.1 Generalized surplus and welfare implications

In the main body we presented a sufficiency result to generate orderings of consumer and producer
welfare under the three business modes. The results contained in this section represent a more fulsome
exploration of welfare in this model dropping the assumptions we use in the main text.

Continue from 6, recall

CS ≡ ũ(λ∗)G(ũ(λ∗)) +
∫ ∞

ũ(λ∗)
xg(x)dx

PS = G(ũ(λ∗))(a+ (1 − τ)v(λ∗)).

Let arg maxλ ũ(λ) ≡ λCS . The next two corollaries are generalizations of Corollary 3

Corollary C.1. In the benchmark monopoly model:

1. A shift from pure discovery mode to hybrid mode weakly decreases (increases) consumer surplus if the
CS-maximizing content design is sufficiently broad (niche): CSH ≤ CSD if λCS ≥ λ∗(r̄, 1), otherwise
CSH ≥ CSD;

2. If A is sufficiently large then a shift from pure membership mode to hybrid mode weakly increases
consumer surplus: CSH ≥ CSM .

Proof. The proofs of Corollary C.1 and C.2 below make extensive use of the following result: λCS is
determined by the FOC

u′(λ) + s

λ2 = 0 (C.1)

u(·) decreasing and concave implies that the second order condition is satisfied and that λCS is increasing
in s.

The pure discovery platform’s revenue is maximized when consumer surplus is maximized, therefore
we must have rD = r̄. From Proposition 1 ũ(λD) is increasing in r, whereas λH ≤ λD. Concavity of u(·)
implies that ũ(·) is concave and therefore has a unique maximum. If if λCS ≥ λ∗(r̄, 1) then λH ≤ λD

implies that ũ(λH) ≤ ũ(λD) and therefore CSH ≤ CSD. If λCS ≤ λ∗(r̄, 1) then an almost identical chain
of logic implies CSH ≥ CSD.

For part 2 of the corollary, consumer surplus would increase even if there were no change in creator
behavior because of the decrease in effective search cost resulting from the recommendations. However, if
we compare the designs between the two modes

λM = arg max
λi∈[0,1]

{λi × (a+ (1 − τ)v (λi))}

λH = arg max
λi∈[0,1]

{
D

(
ũ(λi)
1 − r

; ũ(λ∗)
1 − r

)
λi (a+ (1 − τ)v (λi))

}
.

The latter is increasing in ũ(λi) whereas the former is unaffected by consumer welfare. More formally, note
that from the definition of λH and λM , if a creator designs content such that the FOC for λM is satisfied,
then the derivative of their profit in the hybrid regime will be proportional to

1
1 − r

D′

D

∂ũ

∂λ

and so from concavity of creator profit and ũ(·), for any given τ λH must be closer to λCS than λM .
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Finally, comparing the FOCs for τ in the two modes, τ∗
H is determined by

G (ũ (λH))
g (ũ (λH))

(
v(λH) + v′(λH)τ ∂λH

∂τ

)
+ (A+ τv(λH)) ∂ũ

∂λi

∂λH
∂τ

= 0.

For the pure membership platform

G (ũ0 (λM ))
g (ũ0 (λM ))

(
v(λM ) + v′(λM )τ ∂λM

∂τ

)
+ (τv(λM )) ∂ũ0

∂λi

∂λM
∂τ

= 0.

The first FOC places more weight on the extensive margin, and therefore by a similar argument as for
Proposition 2 the hybrid platform will set τ to create higher ũ(λ) than will a membership platform so long
as A is sufficiently large.

Thus, the consumer surplus implications of going hybrid mode depends which pure mode the platform
is starting at. From here on we assume that A is sufficiently large such that both parts of Corollary C.1
hold.

Moving to aggregate creator surplus (i.e., producer surplus), the implications for creator surplus are
less clear-cut. Nonetheless, we have the following sufficiency results:

Corollary C.2. In the benchmark monopoly model:

1. A shift from pure discovery mode to hybrid mode increases creator surplus if G(·) is sufficiently
inelastic (PSH ≥ PSD) or s sufficiently small.;

2. There exists a bound U < 0 such that if min u′(λ) > U and n0 is not too large then a shift from pure
membership mode to hybrid mode decreases creator surplus (PSH < PSM) if G(·) is sufficiently
inelastic. If G(·) is sufficiently elastic and/or n0 is sufficiently large then the shift increases producer
surplus (PSH ≥ PSM ).

Proof. Creator surplus in the various modes is given by the following equations

PSD = G(ũ(λ∗
D))a

PSH = G(ũ(λ∗
H))(a+ (1 − τ∗

H)v(λ∗
H))

PSM = G(ũ0(λ∗
M ))(a+ (1 − τ∗

M )v(λ∗
M ))

Clearly if λCS ≤ λ∗(r̄, 1) PSD ≤ PSH because λ∗
D = λ∗(r̄, 1) ≥ λ∗

H which implies G(ũ(λ∗
D)) ≤ G(ũ(λ∗

H))
and it is also true that a+ (1 − τ∗

H)v(λ∗(r∗
H , τ

∗
H)) > a. λCS is increasing in s, therefore PSH > PSD if s

is sufficiently small. However, if λCS ≥ λ∗(r̄, 1) then G(ũ(λ∗
D)) ≥ G(ũ(λ∗

H)) and the surplus comparison
is in general ambiguous. However, if G(·) is sufficiently inelastic then the additional revenue source will
outweigh any reduction in consumer participation and producers will be better off with a hybrid platform.

To prove the second result of Corollary C.2, once again compare the commission FOCs.
Hybrid:

G (ũ (λH))
g (ũ (λH))

(
v(λH) + v′(λH)τ ∂λH

∂τ

)
+ (A+ τv(λH)) ∂ũ

∂λi

∂λH
∂τ

= 0.

Pure membership:

G (ũ0 (λM ))
g (ũ0 (λM ))

(
v(λM ) + v′(λM )τ ∂λM

∂τ

)
+ (τv(λM )) ∂ũ0

∂λi

∂λM
∂τ

= 0.

If G(·) is sufficiently inelastic, and s is not too large then the first term will dominate in both FOCs, and
can only be equal to 0 if

(
v(λ) + v′(λ)τ ∂λ∂τ

)
≈ 0, so any differences in commission come from the differing

48



responses of λ to τ . To facilitate this comparison, we compute

∂λ

∂τ
= −v(λ)

(1 − τ)v′(λ)
(
λ−1 + 1

1−r
D′

D
∂ũ
∂λ

)
+ (a+ (1 − τ)v(λ))

[
−λ−2 + 1

1−r
(
∂
∂λ

D′

D
∂ũ
∂λ + D′

D
∂2ũ
∂2λ

)]
From concavity of ũ(λ), log concavity of D, and v′(λ) < 0, every term in the denominator is negative so
long as ∂ũ

∂λ > 0, so the negative in the numerator cancels and ∂λ
∂τ > 0. Now compare to the derivative with

no discovery portal:
∂λ

∂τ
= −v(λ)

(1 − τ)vλ′−1 − λ−2(a+ (1 − τ)v(λ))

Again because of concavity of ũ(λ) and the other conditions from above, eliminating recommendations
from creators incentives means that ∂λ

∂τ is more positive under pure membership than on a hybrid platform
so long as ∂ũ

∂λ > 0. This comparison will remain true if ∂ũ
∂λ < 0 so long as it does not overwhelm the other

two terms in the derivative, we can put a lower bound on ∂ũ
∂λ by bounding min u′(λ), therefore for some

bound U ∂λ
∂τ is greater under pure membership than with a hybrid platform so long as min u′(λ) > U .

As every term except ∂λ
∂τ in

(
v(λ) + v′(λ)τ ∂λ∂τ

)
is the same between the two business modes, the platform

takes a greater commission under a hybrid business model and G(·) inelastic further implies that consumer
participation is approximately the same between the two modes, so PSM > PSH .

For n0 large or G(·) highly elastic, it can be the case that G(ũ(λ∗
H))a > G(ũ0(λ∗

M ))(a+(1−τ∗
M )v(λ∗

M )),
in which case creators are always better off in the hybrid regime even if τH = 1.

Consider first the shift from pure discovery mode to hybrid mode. On the one hand, the shift benefits
creators by enabling them to get revenue from exclusive content. On the other hand, for large s the
associated decrease in broadness λH ≤ λD reduces consumer participation, and the additional revenue does
not compensate for that if τ is large enough. If G(·) is inelastic then the revenue effect dominates and if s
is small so that consumer surplus increases with a hybrid platform then consumer participation increases
and the hybrid mode is unambiguously better for creators.

When a pure membership platform adds a discovery portal, this attracts additional consumers, but the
chase the algorithm effect means that creators may respond less to a change in τ , which encourages the
platform to charge a higher commission. If ũ′(λ) is highly negative then the chase the algorithm effect
creates an increase in consumer participation and increases v(λ), which can lead to creators being more
responsive to a change in τ . In all other cases however the effect of the business model choice on creator
surplus is weighing the increase in commission against the additional consumer participation.

To analyze the total surplus (W ), we focus on the case with inelastic G(·), as in the main text. We
recall from the main text that WH > WD if and only if

ũ(λH) + v(λH) > ũ(λD)

If s is sufficiently large, then WH ≤ WD. This is because λH ≤ λD implies that consumer welfare is reduced
with the shift from pure discovery to hybrid, and if it is large enough then ũ(λH) − ũ(λD) > v(λH). On
the other hand, if s is quite small such that such that λCS < λD, then λH ≤ λD implies WH > WD.

Similarly, WH > WM if and only if

ũ(λH) + v(λH) +A− C > ũ0(λM ) + v(λM )

Given our assumption that both parts of Corollary 3 hold, ũ(λH) ≥ ũ0(λM ). Therefore, WH ≤ WM can
possibly occur only when v(λM ) > v(λH) by a large margin.
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C.1.1 Social Planner

In the main text, our total surplus ranking of business models is defined by comparing the equilibrium
welfare (total surplus) in each mode, assuming the platform is profit-maximizing. There, we say that
misalignment occurs when the mode with the highest equilibrium profit is different from the mode with the
highest equilibrium total surplus.

An alternative approach, which we consider here, is to define misalignment as occurring whenever
the highest equilibrium profit is different from the mode with that would be chosen by a platform that
maximizes the total surplus (i.e., a social planner or a first-best solution). Such a social planner would
have exactly the same business model choices (whether to operate a discovery and/or membership portal)
and the strategic variable choices (r and τ).37

□ Welfare-maximizing planner. Define LD, LM , and LH as the feasible sets of λ that the planner
can induce using r and/or τ under each mode. For each given mode, we can state a planner’s problem as
choosing λ from each feasible set. Then, the planner’s problem is written as:

max
λ∈LP⋖ ,Pl∈{D,M,H}

G
(
ũ0(λ) + (1 − I{M})ũ(λ)

) (
I{M}ũ0(λ) + (1 − I{M}) [ũ(λ) +A] + a+ v(λ) · I{not D}

)
+
∫ ∞

(1−I{M})ũ(λ)+I{M}ũ0(λ)
xg(x)dx− (1 − I{M})C

where the decision variable Pl represents the choice of business model of the planner.
The planner will never choose Pl = D because the equilibrium replication argument from Proposition 3

implies that it is worse than Pl = H. It remains to compare Pl = H and Pl = M . In what follows, we
assume G(·) is highly inelastic.

Consider Pl = H, the FOC with respect to λ ∈ LH

G (ũ(λ)) [ũ′(λ) + v′(λ)] + g (ũ(λ)) ũ′(λ)
[
(1 − I{M}) [A− C] + a+ v(λ)

]
= 0 (C.2)

Given G(·) is highly inelastic, then the FOC reduces to

ũ′(λ) + v′(λ) = 0, (C.3)

and we denote the welfare-maximizing solution in hybrid mode as λWH ∈ LH . Likewise, consider Pl = M .
By the same analysis, the corresponding FOC is

ũ0
′(λ) + v′(λ) = 0, (C.4)

and we denote the welfare-maximizing solution in this mode as λWM ∈ LM . Therefore, maximizing welfare
in each case is simply a combination of maximizing consumer participation utility and transaction revenue.
Because v′(λ) < 0 it is immediate that λWH ≤ λCS whenever λCS ∈ LH , where λCS is defined in (C.1)
(likewise, λWM ≤ λCS whenever λCS ∈ LM ). Moreover, the inequality ũ0

′(λ) ≥ ũ′(λ) always holds for any
given λ, and so the FOCs mean that λWH ≤ λWM whenever λWM ∈ LH .38

We now identify a sufficient condition for Pl = H to be the optimal mode for the planner, as compared
to Pl = M . From the social planner’s perspective, the upsides of introducing a discovery portal are the
advertising revenue A − C and the reduction in the effective search cost paid by consumers, whereas

37Some might consider consumer surplus as an appropriate objective for the social planner. It is trivial to show
that such a planner would weakly prefer choosing the hybrid mode over the other modes using a outcome-replication
argument as in Proposition 3. Hence, here we focus our attention on total surplus.

38Allowing for a change in consumer participation increases the relative importance of ũ(λ) relative to v(λ). g(·)
and the term in square brackets in the second term are both positive, so the second term has the same sign as ũ′(λ)
and leads the planner to set λ slightly higher than it would if it were not taking participation changes into account.
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the downside is that the chase-the-algorithm effect result in the difference in the maximization domain
LH ̸= LM . By the replication argument, a sufficient for Pl = H to be the optimal mode is

λWM ∈ LH .

This condition fails only if the the chase-the-algorithm effect is so severe such that λWM ̸∈ LH .
In sum, consistent with Figure 3, the discussion suggests that a hybrid mode tends to be preferred over

a pure membership mode for the planner. The only exception is the arguably rare case in which all of the
following conditions hold simultaneously:

• A− C is small enough.

• Search cost s is small enough such that the reduction in search cost from the discovery portal is
small.

• v(λ) decreases quickly

□ Misalignment of business mode adoption of a profit-maximizing platform. For simplicity,
suppose the parameters are such that the hybrid mode Pl = H is the optimal mode for the planner (see the
sufficient condition above). Then, from Proposition 2, it is immediate that misalignment occurs whenever
the profit-maximizing platform adopts the pure membership mode, i.e., whenever A < Amono.

□ Misalignment in the induced design for a given mode. For the pure discovery mode, it is
clear that λWD = λ∗

D. Meanwhile, the comparisons in each of the other modes are ambiguous in general. To
see this, consider the hybrid mode. If A is large, then the profit-maximizing platform will likely induce
λ∗
H > λWH because it only captures the fraction τ ≤ 1 of v(λ), and so it will underweight exclusive content

revenue relative to consumer participation unless τ = 1. However if A is relatively small then the platform
places more weight on v(λ) and may even set λ∗

H < λWH because the platform does not take ũ(λ) into
account except as far as it affects participation.

D Extension: endogenous ad and revenue instruments
We denote λ∗ = λ∗ (r, τ) as the solution to the fixed-point equation

λ∗(p, f, r, τ) = arg max
λi∈[0,1]

{
D

(
ũ(λi)
1 − r

; ũ(λ∗)
1 − r

)
(a+ (1 − f)pA+ (1 − τ)v (λi))λi

}
.

Obviously, λ∗ > 0; whereas ∂λ∗/∂τ ≥ 0, ∂λ∗/∂f ≤ 0, ∂λ∗/∂p ≥ 0, ∂λ∗/∂A ≥ 0 (with the inequality strict
whenever λ∗ ∈ (0, 1)); whereas ∂λ∗/∂r has the same sign as ∂ũ/∂λi, meaning that ũ(λ∗(p, f, r, τ)) is always
increasing in r.

Notice λ∗
H = λ∗ (p, f, r, τ), λ∗

D = λ∗ (p, f, r, 1), and λ∗
M = λ∗ (0, 1,−∞, τ). Platform profits are

ΠH(p, f, r, τ) = G (ũ (λ∗(p, f, r, τ)) − p) (fpA+ τv (λ∗(p, f, r, τ))) − C

ΠD(p, f, r) = G (ũ (λ∗(p, f, r, 1)) − p) fpA− C

ΠM (τ) = G (ũ0 (λ∗(0, 1,−∞, τ))) τv (λ∗(0, 1,−∞, τ)) .

where recall ũ(λi) ≡ u(λi) − s
λi

and ũ0(λi) ≡ u(λi) − n0s
λi

. Denote (p∗
k, f

∗
k , r

∗
k, τ

∗
k ) as the optimal platform

choices in each mode k ∈ {D,M,H}, whenever the choices are applicable.

Proposition D.1. Consider a move from the pure discovery mode to the hybrid mode. Then, the platform
profit increases (Π∗

H > Π∗
D); Suppose r̄ → 1, then the equilibrium content design becomes less broad

(λ∗
H ≤ λ∗

D), and f∗
D = f∗

H = 1.
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Proof. We apply the profit replication argument:

Π∗
D = G (ũ (λ∗(p∗

D, f
∗
D, r

∗
D, 1)) − p∗

D) f∗
Dp

∗
DA− C

< G (ũ (λ∗(p∗
D, f

∗
D, r

∗
D, 1)) − p∗

D) (f∗
Dp

∗
DA+ τv (λ∗(p∗

D, f
∗
D, r

∗
D, 1))) − C

= ΠH(p∗
D, f

∗
D, r

∗
D, 1)

≤ Π∗
H

For the result on the equilibrium design, we first note r∗
D = r̄ because ũ(λ∗(p, f, r, τ)) is always

increasing in r. Then, if r∗
D = r̄ → 1, then each creator i chooses λi to maximize ũ(λi) in order to get

recommended akin to a homogeneous-good Bertrand competition, so

λ∗
D = λ∗

CS ≡ arg max
λi

ũ(λi) = arg max
λi

{
u(λi) − s

λi

}
.

If r∗
H = r̄ → 1, then λ∗

H = λCS and we are done. Consider r∗
H < r̄ and suppose by contradiction

λ∗
H = λ(p∗

H , f
∗
H , r

∗
H , τ

∗
H) > λ∗

D = λCS . By strict concavity of ũ, this means that

∂ũ

∂λi
|λ∗

H
< 0.

Consider a deviation by the hybrid mode platform to sensitivity r∗
H+ϵ, which is always feasible given r∗

H < r̄.
Then, inequality ∂ũ

∂λi
|λ∗

H
< 0 implies λ∗

H > λ∗(p∗
H , f

∗
H , r

∗
H + ϵ, τ∗

H) and ũ(λ∗
H) < ũ(λ(p∗

H , f
∗
H , r

∗
H + ϵ, τ∗

H))
because ∂λ∗/∂r has the same sign as ∂ũ/∂λi. Then, given v(.) is decreasing, we get

Π∗
H = G (ũ (λ∗(p∗

H , f
∗
H , r

∗
H , τ

∗
H)) − p∗

H) (f∗
Hp

∗
HA+ τ∗

Hv (λ∗(p∗
H , f

∗
H , r

∗
H , τ

∗
H))) − C

< G (ũ(λ∗(p∗
H , f

∗
H , r

∗
H + ϵ, τ∗

H)) − p∗
H) (f∗

Hp
∗
HA+ v (λ∗(p∗

H , f
∗
H , r

∗
H + ϵ, τ∗

H))) − C

= ΠH(p∗
H , f

∗
H , r

∗
H + ϵ, τ∗

H),

a contradiction to optimality of r∗
H . Hence, we conclude λ∗

H ≤ λ∗
D.

For the result on the equilibrium fees, we first note r̄ → 1 implies the pure discovery mode maximization
problem is

max
p,f

G (ũ (λCS) − p) fpA− C,

which is monotone in f and so f∗
D = 1. If λ∗

H = λ∗
D = λCS , then the same argument applies to the

hybrid mode so that f∗
H = 1. Consider λ∗

H < λCS , which means ∂ũ
∂λi

|λ∗
H
> 0 by strict concavity of ũ. By

contradiction, suppose f∗
H < 1, the platform can increase r and f simultaneously to make λ∗ constant

(recall ∂λ∗/∂f < 0 whereas ∂λ∗/∂r has the same sign as ∂ũ/∂λi > 0) and strictly increase its revenue
fpA+ τv(λ∗), a contradiction.

Before proving the next result, we make the following observations:

Lemma D.1. Suppose s > s̄max. When maximizing ΠH(p, f, r, τ), the boundary constraints f ≤ 1,.
r ∈ [r, r̄], and τ ≤ 1 have the following properties:

1. Either f∗
H = 1 or τ∗

H = 1 (or both);

2. Either r∗
H = r or τ∗

H = 1 (or both).

Proof. Denote the overall equilibrium design at λ∗
H = λ∗(p∗

H , f
∗
H , r

∗
H , τ

∗
H). If λ∗

H = 1, then τ∗
H < 1 is

obviously sub-optimal because

ΠH(p∗
H , f

∗
H , r

∗
H , τ

∗
H) = G (ũ (1) − p∗

H) (f∗
Hp

∗
HA+ τ∗

Hv (1)) − C
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can be strictly increased by raising commission to τ∗
H + ϵ. Consider λ∗

H < 1, in what follows.
(1) By contradiction, suppose f∗

H < 1 and τ∗
H < 1. The platform can increase τ and f simultaneously

to make λ∗ constant while strictly increasing its revenue fpA+ τv(λ∗).
(2) By contradiction, suppose r∗

H > r and τ∗
H < 1. By the supposition and strict concavity of ũ, we

have ∂ũ
∂λi

|λ∗
H
> 0. Then, the platform can increase τ and lowering r simultaneously to make λ∗ constant

while strictly increasing its revenue fpA+ τv(λ∗).

Proposition D.2. Consider a move from the pure membership mode to the hybrid mode and suppose
s > s̄max. There exist weakly positive thresholds Amono, A′

mono, such that:

• The equilibrium content design becomes broader (λ∗
H ≥ λ∗

M ) if A ≥ A′
mono;

• The platform profit increases if and only if A ≥ Amono; moreover, Amono > 0 if τ∗
M < 1 and G is

sufficiently inelastic.

Proof. We first prove that Π∗
H is monotone increasing in A (note that ∂λ∗/∂A ≥ 0 so this involves

additional steps compared to Proposition 2). Starting from any arbitrary A = A1, consider a small increase
to A2 > A1. Denote the maximizer at A = A1 as (p∗

H , f
∗
H , r

∗
H , τ

∗
H). If f∗

H = 1 at A = A1 then λ∗(p, f∗
H , r, τ)

is independent of A so that Π∗
H(A2) ≥ Π∗

H(A1) by envelope theorem. If f∗
H < 1 at A = A1, then let

f ′
H = 1 − (1 − f∗

H)A1

A2
> f∗

H

so that
λ∗(p∗

H , f
∗
H , r

∗
H , τ

∗
H)|A=A1 = λ∗(p∗

H , f
′
H , r

∗
H , τ

∗
H)|A=A2 .

Then

Π∗
H |A=A2 ≥ G (ũ (λ∗(p∗

H , f
′
H , r

∗
H , τ

∗
H)|A=A2) − p) (fp∗

HA2 + τv (λ∗(p∗
H , f

′
H , r

∗
H , τ

∗
H)|A=A2)) − C

= G (ũ (λ∗(p∗
H , f

∗
H , r

∗
H , τ

∗
H)|A=A1) − p) (fp∗

HA2 + τv (λ∗(p∗
H , f

∗
H , r

∗
H , τ

∗
H)|A=A1)) − C

> G (ũ (λ∗(p∗
H , f

∗
H , r

∗
H , τ

∗
H)|A=A1) − p) (fp∗

HA1 + τv (λ∗(p∗
H , f

∗
H , r

∗
H , τ

∗
H)|A=A1)) − C

= Π∗
H |A=A1

where the first inequality uses the definition of Π∗
H(A2) being the maximum, the equality uses the definition

of f ′
H above, and the last inequality uses A2 > A1. Hence, we conclude Π∗

H is monotone increasing in A.
The intermediate value theorem and implicit function theorem together prove the existence and uniqueness
of threshold Amono ≥ 0 (if Π∗

H > Π∗
M for all A ≥ 0, then we set Amono = 0).

To show Amono > 0 if G is sufficiently inelastic, let A = 0 and G(.) be a constant, then

Π∗
H = G× τ∗

Hv(λ∗(r∗
H , τ

∗
H)) − C

< G× τ∗
Hv(λ∗(−∞, τ∗

H)) − C

≤ G× τ∗
Mv(λ∗(−∞, τ∗

M )) = Π∗
M .

where the first inequality follows from v(.) being decreasing and ∂λ∗/∂r > 0 (implied by ũ(λi) being
monotone increasing) and λ∗(−∞, τ∗

H) < 1 (implied by τ∗
M < 1), and the second inequality follows from

the definition of τ∗
M and C ≥ 0.
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To prove the results on the equilibrium design, we first note that if τ∗
H = 1, then

λ∗
H = λ∗(p∗

H , f
∗
H , r

∗
H , 1)

≥ λ∗(0, 1,−∞, 1) (λ∗ increasing in r ≥ 0 and (1 − f)p ≥ 0)
≥ λ∗(0, 1,−∞, τ∗

M ) (λ∗ increasing in τ ≤ 1)
= λ∗

M .

If instead τ∗
H < 1, then it implies f∗

H = 1 and r∗
H = r (Lemma D.1). With a slight abuse of notation, denote

in what follows
λ∗(r, τ) = λ∗(p, 1, r, τ)

where we note f = 1 means λ∗(p, 1, r, τ) becomes independent of p. This is exactly λ∗(r, τ) in the proof of
Proposition 2. Using this notation, we can simplify the optimal choices in the hybrid mode as

(p∗
H , τ

∗
H) = arg max

p,τ
{G (ũ(λ∗(r, τ)) − p) (pA+ τv(λ∗(r, τ)))} .

If we can show that τ∗
H is increasing in A, then it follows that there exists a threshold A′

mono such that
τ∗
H ≥ τ∗

M for all A ≥ A′
mono. Then, we are done because A ≥ A′

mono then implies

λ∗
H = λ∗(r, τ∗

H) ≥ λ∗(−∞, τ∗
H) ≥ λ∗(−∞, τ∗

M ) = λ∗
M .

To show τ∗
H is increasing in A, note that this is obvious if either τ∗

H or p∗
H is non-interior. If instead τ∗

H

and p∗
H are interior solutions, they are jointly pinned down by FOC that can be simplified as

v(λ∗) +
(
A
∂ũ

∂λi
+ τ∗

Hv
′(λ∗)

)
∂λ∗

∂τ
= 0

A− (pA+ τ∗
Hv(λ∗(r, τ))) g (ũ(λ∗) − p)

G (ũ(λ∗) − p) = 0.

where λ∗ = λ∗(r, τ∗
H). Total differentiation on the first equation gives[

2v′(λ∗)∂λ
∗

∂τ
+
(
A
∂ũ

∂λi
+ τ∗

Hv
′(λ∗)

)
∂2λ∗

∂τ2 +
(
A
∂2ũ

∂λ∗2
i

+ τ∗
Hv

′′(λ∗)
)(

∂λ∗

∂τ

)2
]
dτ∗
H

dA
= − ∂ũ

∂λi

∂λ∗

∂τ

=⇒ dτ∗
H

dA
=

− ∂ũ
∂λi

∂λ∗

∂τ

2v′(λ∗)∂λ∗

∂τ − v(λ∗)
∂λ∗
∂τ

∂2λ∗

∂τ2 +
(
A∂2ũ
∂λ2

i
+ τ∗

Hv
′′(λ∗)

) (
∂λ∗

∂τ

)2 ≥ 0

where the denominator is positive by the quasiconcavity condition.

E Extension: asymmetric creators

E.1 Summary

In this section, we extend the monopoly model by introducing asymmetric creators who are heterogeneous
in their flat per-viewer gain ai ∈ [a, ā] in (3), and denote the corresponding distribution function as F .
That is, creators are heterogeneous in terms of the profitability of their individual sponsorship revenues or
intrinsic image gain. In line with the baseline model, we assume each creator’s per-viewer gain ai and its
type ti are independently distributed.

Each creator i will make asymmetric content design decisions in the equilibrium, denoted as λ(ai).
Note that we recover the baseline model if a = ā. We remind the reader here that we are assuming s ≥ s̄max

holds so that ũ(λi) is monotone increasing.
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One complication in this asymmetric environment is that we need to work with the distribution of
equilibrium design rather than a single symmetric equilibrium design. To ensure that the analysis remains
tractable, we impose the logit recommendation function in (5). We assume that the parameters are such
that λ (ai) ∈ (0, 1) for all ai ∈ [a, ā], that F is uniform, and that the linear specification in (4) holds.

Consider the creator-consumer subgame for any arbitrarily given r and τ (recall that τ = 1 in the pure
discovery mode, and r = −∞ in the pure membership mode). Following Section 4, in the equilibrium of
the subgame, each creator i joins both portals of the platform and sets

λ (ai) = arg max
λi∈[0,1]

{
exp

(
ũ(λi)
1 − r

)
× λi × (ai + (1 − τ)v (λi))

}
.

Notice that λ∗ (ai) is increasing in ai: creators with a higher per-viewer gain opt for broader designs than
lower-type creators. Then, define F̃ as the effective (i.e., recommendation-weighted) distribution of content
design. The corresponding CDF is

F̃ (z) =

∫ z
λ(a) exp

(
ũ(λi)
1−r

)
dFλ(λi)∫ λ(ā)

λ(a) exp
(
ũ(λi)
1−r

)
dFλ(λi)

for z ∈ [λ(a), λ(ā)] ,

where Fλ(λi) = Pr(λ (ai) ≤ λi) = F (λ−1(λi)) is the unconditional (i.e., not weighted by recommendations)
distribution of content design λ (ai). In other words, F̃ is the distribution of creator design that a consumer
faces when searching on the platform and following the recommendation. Notice that if r = −∞, then
F̃ = Fλ.

In this environment, consumers strictly prefer following the platform’s recommendation in each step
of the search because the recommendation rule (2) is consistent with the Pandora’s rule. In other
words, consumers face a more favorable distribution of search reservation value when they follow the
recommendation than not following: distribution F̃ is higher than Fλ in the sense of first-order stochastic
dominance (FOSD), holding the decisions of the creators fixed. Moreover, even though λi are asymmetric
in the equilibrium, an application of Weitzman’s (1979) stopping rule shows that consumers indeed
stop searching upon observing a positive match value with a creator, as in Lemma 1. Each consumer
believes that the distribution of λi is given by F̃ , and initiates search if and only if outside option satisfies
x ≤

∫ λ(ā)
λ(a) ũ(z)dF̃ (z).

The following result is analogous to Proposition 1 in the baseline model, showing how the platform’s
choices affect the effective distribution of the content design.

Lemma E.1. In the model of asymmetric creators described in this section, the recommendation-weighted
distribution of content design F̃ (z; r, τ) in (E.3) is increasing in τ and r in the sense of first-order stochastic
dominance (FOSD).

Based on this result, we verify that the qualitative insights in Propositions 2 and 3 continue to hold.
The only mechanical difference is that, when creators make asymmetric content design decisions in the
equilibrium, the platform’s choice of mode now influences the market outcome through an additional
recommendation-shifting effect where by a higher recommendation sensitivity r or a higher commission τ

means that creators with a higher ai are more likely to be recommended.

E.2 Analytical details and proofs

Creators are asymmetric in their intrinsic image gain ai ∈ [a, ā], following distribution F , which is
assumed to be uniform. The recommendation function follows the logit specification (5) so that D′(z)

D(z) = 1
due to the continuum assumption. As stated in the main text, we impose the linear microfoundation in (4):
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v (λi) = (v0 − λi) γ and u (λi) = b+ (v0 − λi) (1 − γ).

Recall we focus on the case of sufficiently large search cost s ≥ 1−γ so that ũ(λi) = b+(v0 − λi) (1−γ)+ s
λi

is monotone increasing. Recall

λ (ai) = arg max
λi∈[0,1]

{
exp

(
ũ(λi)
1 − r

)
× λi × (ai + (1 − τ)v (λi))

}
.

We assume the parameters are such that λ (ai) ∈ (0, 1) for all r ∈ [r, r̄] and τ ≤ max{τ∗
M , τ

∗
H} such that it

is always pinned down by first-order condition:

0 = 1
λ

+ 1
1 − r

( s
λ2 − (1 − γ)

)
− (1 − τ)γ
a+ (1 − τ)(v0 − λ)γ (E.1)

Then, observe that λ (ai) = λ (ai; r, τ) is strictly increasing in τ , r, and ai. In particular, its inverse
λ−1 : [λ(a), λ(ā)] → [a, ā] is well-defined by inverting (E.1):

λ−1(λ̃i) =
(

−v′(λi)
(

1
λi

+ 1
1 − r

∂ũ

∂λi

)−1
− v(λi)

)
(1 − τ) (E.2)

=
(

1
1/λ̃i + 1

1−r∂ũ/∂λi
− v0 + λ̃i

)
(1 − τ)γ

and clearly ∂λ−1(z)
∂z > 0.

Notice that, in the absence of platform recommendation, the unconditional distribution of content
design λ (ai) is

Fλ(z) = Pr(λ (ai) ≤ z) = Pr(ai ≤ λ−1(z))
= F (λ−1(z)) for z ∈ [λ(a), λ(ā)] .

Denote
fλ(z) = ∂

∂z
F (λ−1(z)) = f(λ−1(z))∂λ

−1(z)
∂z

.

Then, define F̃ as the (recommendation-weighted) effective distribution of content design, where the
corresponding cumulative distribution function is

F̃ (z) =

∫ z
λ(a) exp

(
ũ(λi)
1−r

)
fλ(λi)dλi∫ λ(ā)

λ(a) exp
(
ũ(λi)
1−r

)
fλ(λi)dλi

for z ∈ [λ(a), λ(ā)] , (E.3)

and note F̃ depends on τ and r. Notice if r = −∞ then F̃ (z) = F (λ−1(z)). To make explicit the
dependency, we will sometimes write the CDF as F̃ (z; r, τ). Recall we assume F is uniform.

We now verify the claim on consumer search behavior stated in the main text:

Lemma E.2. For given r on the equilibrium path, each consumer believes that the distribution of design is
described by CDF F̃ , and initiates search if and only if

x ≤
∫ λ(ā)

λ(a)
ũ(z)F̃ (z),

and does so through the discovery portal (follows the recommendation in every step of search). Upon
observing a positive match value with a creator, the consumer stops searching and becomes a viewer of the
creator.
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Proof. On the equilibrium path, suppose a consumer has inspected a creator i and the realized value is
uij = u (λi) > 0. By Pandora’s rule (Weitzman 1979) and the assumption of a continuum of creators, we
know a consumer stops searching if and only if u (λi) is higher than the expected incremental gain, that is,

u (λi) ≥
∫ λ(ā)

λ(a)
ũ(z)F̃ (z). (E.4)

To establish (E.4), recall we are focusing on the case of sufficiently large s so that ũ(z) is increasing.
Therefore, ∫ λ(ā)

λ(a)
ũ(z)F̃ (z) ≤ ũ(λ(ā)) < u (λ(ā))

≤ u (λi) for all λi ∈ [λ(a), λ(ā)]

where the last two inequalities used ũ(λi) = u (λi) − s
λi

and u (λi) being decreasing for all λi. Consumers
strictly prefer following the platform’s recommendation in each step of the search because the recommen-
dation rule (2) is consistent with the Pandora’s rule, as stated in the text. Finally, by stationarity, the
ex-ante expected surplus from initiating search is exactly

∫ λ(ā)
λ(a) ũ(z)F̃ (z). Note this proof nests r = −∞ as

a special case.

Then, the following result is analogous to Proposition 1 in the main text.

Lemma E.3. In the model of asymmetric creators described in this section, the recommendation-weighted
distribution of content design F̃ (z; r, τ) in (E.3) is increasing in τ and r in the sense of first-order stochastic
dominance (FOSD).

Proof. We note the distribution support [λ(a), λ(ā)] shifts upward when τ and r increases (recall ∂λ (ai) /∂τ >
0 and ∂λ (ai) /∂r > 0), so it remains to check the functional form of F̃ (z). Denote

Z(λi) ≡ fλ(λi) exp
(
ũ(λi)
1 − r

)
= f(λ−1(z))∂λ

−1(z)
∂z

exp
(
ũ(λi)
1 − r

)
where we note λ−1(z) depends on τ and r.

Consider the comparative statics with respect to τ . Taking the derivative,

dF̃ (z)
dτ

=
(∫ λ(ā)

λ(a)
Z(λi)dλi

)(∫ z

λ(a)

∂Z(λi)
∂τ

dλi

)
−

(∫ z

λ(a)
Z(λi)dλi

)(∫ λ(ā)

λ(a)

∂Z(λi)
∂τ

dλi

)

−

(∫ λ(ā)

z

Z(λi)dλi

)
Z(λ(a))∂λ(a)

∂τ
−

(∫ z

λ(a)
Z(λi)dλi

)
Z(λ(ā))∂λ(ā)

∂τ
,

where the second line is negative. Therefore, dF̃ (z)
dτ ≤ 0 if

∫ z
λ(a)

∂Z(λi)
∂τ dλi∫ z

λ(a) Z(λi)dλi
≤

∫ λ(ā)
λ(a)

∂Z(λi)
∂τ dλi∫ λ(ā)

λ(a) Z(λi)dλi
, (E.5)

which holds if the LHS of (E.5) is increasing in z. The corresponding derivative of the LHS of (E.5) is
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positive if and only if

∂Z(z)/∂τ
Z(z) ≥

∫ z
λ(a)

∂Z(λi)
∂τ dλi∫ z

λ(a) Z(λi)dλi
(E.6)

=
∫ z

λ(a)

∂Z(λi)/∂τ
Z(λi)

(
Z(λi)∫ z

λ(a) Z(λi)dλi

)
dλi

Hence, a sufficient condition for (E.6) is ∂Z(z)/∂τ
Z(z) being increasing in z. Simplifying:

∂Z(z)/∂τ
Z(z) = ∂fλ(z)/∂τ

fλ(λi)

= f ′(λ−1(z))
f(λ−1(z))

∂λ−1(z)
∂τ

+ ∂2λ−1(z)/∂z∂τ
∂λ−1(z)/∂z

Imposing uniform F and (E.2), we get f ′ = 0 and ∂2λ−1(z)
∂z∂τ = −∂λ−1(z)/∂z

1−τ and so

∂Z(z)/∂τ
Z(z) = − 1

1 − τ

which is independent of z if f ′ = 0. Then, given that the support [λ(a), λ(ā)] shifts upward as τ increases,
it follows that F̃ (z) is increasing in FOSD sense when τ increases.

Consider the comparative statics with respect to r. By the same steps as previous case, we know a
sufficient condition for dF̃ (z)

dr ≤ 0 is ∂Z(z)/∂r
Z(z) being increasing in z. Simplifying by imposing uniform F , we

get
∂Z(z)/∂r
Z(z) = ∂2λ−1(z)/∂z∂r

∂λ−1(z)/∂z + ũ(z)
(1 − r)2 .

Solving for the derivatives with (E.2), we get

dλ−1(z)
dx

=
(
dψ/dx+ ψ2

ψ2

)
(1 − τ)γ > 0

where ψ = 1
z + 1

1−r
(
s
z2 − (1 − γ)

)
> 0 and dψ/dx+ ψ2 > 0 because 1 − γ ≤ s. Then,

∂2λ−1(z)/∂z∂r
∂λ−1(z)/∂z =

ψ
(

dψ
dxdr

)
− 2

(
dψ
dx

)(
dψ
dr

)
ψ dψdx + ψ3

.

Simplifying the algebra, it can be verified that the expression above is increasing in z.

The profit function of the monopoly platform in the pure membership, pure discovery, and hybrid
modes are, respectively,

ΠM (τ) = G

(∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; −∞, τ)

)
τ

∫ λ(ā)

λ(a)
v(z)dF̃ (z; −∞, τ);

ΠD(r) = G

(∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, 1)

)
A− C;

ΠH(r, τ) = G

(∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ)

)(
A+ τ

∫ λ(ā)

λ(a)
v(z)dF̃ (z; r, τ)

)
− C

Denote Π∗
M , Π∗

D, and Π∗
H as the respective maximized profit, and the corresponding effective distribution

of content design as F̃ ∗
M , F̃ ∗

D, and F̃ ∗
H .
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We are now ready to compare across the modes of operations.

Proposition E.1. Consider a move from the pure discovery mode to the hybrid mode. Then, in the model
of asymmetric creators described in this section, the equilibrium distribution of content design broadness
becomes lower in the sense of first-order stochastic dominance (F̃ ∗

D ≥FOSD F̃ ∗
H); and the platform profit

increases (Π∗
H > Π∗

D).

Proof. Clearly, r∗
D ≥ r∗

H by Lemma E.3 because the pure discovery platform sets r∗
D = r̄ to maximize∫ λ(ā)

λ(a) ũ(z)dF̃ (z; r, 1). Then,

F̃ ∗
D = F̃ (z; r∗

D, 1) ≥FOSD F̃ (z; r∗
H , τ

∗
H) = F̃ ∗

H

by Lemma E.3. Meanwhile, the profit comparison follows from the profit replication argument as in
Proposition 3.

Proposition E.2. Consider a move from the pure membership mode to the hybrid mode. Then, in the
model of asymmetric creators described in this section, there exist weakly positive thresholds Amono, A′

mono,
such that:

• the equilibrium distribution of content design broadness becomes higher in the sense of first-order
stochastic dominance (F̃ ∗

H ≥FOSD F̃ ∗
M ) if A ≥ A′

mono;

• The platform profit increases if and only if A ≥ Amono; Moreover, Amono > 0 if G is sufficiently
inelastic.

Proof. We first note that either r∗
H = r or τ∗

H = 1 (or both). To see this, suppose by contradiction, suppose
r∗
H > r and τ∗

H < 1. By the supposition and strict concavity of ũ, we know d
dr

∫ λ(ā)
λ(a) ũ(z)dF̃ (z; r∗

H , τ
∗
H) is

strictly increasing in r. Then, the platform can increase τ while lowering r simultaneously to make the
distribution of equilibrium design at F̃ (z; r∗

H , τ
∗
H) (Lemma E.3), while strictly increasing its per-viewer

revenue τ
∫ λ(ā)
λ(a) v(z)dF̃ (z; r∗

H , τ
∗
H), meaning (r∗

H , τ
∗
H) is not optimal, a contradiction.

If τ∗
H = 1, then F̃ ∗

H = F̃ (z; r∗
H , τ

∗
H) ≥FOSD F̃ (z; −∞, τ∗

M ) = F̃ ∗
M by Lemma E.3. Suppose instead

τ∗
H < 1, then by the previous paragraph we know r∗

H = r. Therefore, τ∗
H is characterized by FOC

0 =
G
(∫ λ(ā)

λ(a) ũ(z)dF̃ (z; r, τ)
)

g
(∫ λ(ā)

λ(a) ũ(z)dF̃ (z; r, τ)
) (∫ λ(ā)

λ(a)
v(z)dF̃ (z; r, τ) + τ

d

dτ

∫ λ(ā)

λ(a)
v(z)dF̃ (z; r, τ)

)

+ (A+ τv(λ)) d

dτ

∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ)︸ ︷︷ ︸

≥0 by Lemma E.3

,

where the LHS is increasing in A. Thus, τ∗
H is increasing in A by the implicit function theorem, whereas

τ∗
M is independent of A. The intermediate value theorem establishes the existence of threshold A′

mono such
that τ∗

H ≥ τ∗
M , in which case we have F̃ ∗

H = F̃ (z; r, τ∗
H) ≥FOSD F̃ (z; −∞, τ∗

M ) by Lemma E.3.
Meanwhile, the profit comparison follows from the same envelope theorem argument as in the proof of

Proposition 2. To show Amono > 0 if G is sufficiently inelastic, let A = 0 and G(.) be a constant, then

Π∗
H = G× τ∗

H

∫ λ(ā)

λ(a)
v(z)dF̃ (z; r∗

H , τ
∗
H) − C

< G× τ∗
H

∫ λ(ā)

λ(a)
v(z)dF̃ (z; −∞, τ∗

H) − C

≤ G× τ∗
M

∫ λ(ā)

λ(a)
v(z)dF̃ (z; −∞, τ∗

M )) = Π∗
M .
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where the first inequality follows from v(.) being decreasing Lemma E.3, and the second inequality follows
from the definition of τ∗

M and C ≥ 0.

F Extension: elastic creator participation and network effects

F.1 Summary

In our model, all creators are active and join the platform in the equilibrium. As such, participation
by consumers and creators are essentially independent, as long as we rule out the coordination problem
associated with the trivial equilibrium with no participation. In that sense, our model does not feature
explicit cross-group network effects emphasized by the literature of two-sided markets (Rochet and Tirole
2003; Armstrong 2006), except in the form of participation coordination. Allowing for elastic creator
participation (that is, platform decisions affect the mass of active creators in a continuous manner) does
not affect our results so long as a strictly positive mass of creators are always active. This is due to the
assumptions of: (i) a continuum of symmetric creators and (ii) unit demand by consumers.

In this section, we expand the asymmetric creators model of Section E by exploring the impact of elastic
creator participation. We assume that creators face a fixed cost c > 0 for being active (regardless of whether
the creator is joining the discovery portal, the membership portal, or both) so that their participation is
elastic. In this case, participation decisions of consumers and creators are interdependent, thus generating
cross-group network effects.

To see this point, let us focus on the most general case of a hybrid mode. It can be shown that there
exists a unique creator participation threshold â ∈ [a, ā] such that all creators with ai ≥ â are active
whereas those with type ai < â are inactive. The marginal creator with type ai = â is indifferent between
being active (and joining the monopoly platform) and being inactive:

G

(∫ λ(ā)

λ(â)
ũ(z)dF̃ (z; r, τ, â)

) exp
(
ũ(λ(â))

1−r

)
∫ ā
â

exp
(
ũ(λ(ai))

1−r

)
dF (ai)

λ (â) (â+ (1 − τ)v (λ (â))) = c, (F.1)

where F̃ (z; r, τ, â) is the effective distribution of content design, conditioned on the set of participating
creators:

F̃ (z; r, τ, â) =

∫ z
λ(â) exp

(
ũ(λi)
1−r

)
fλ(λi)dλi∫ λ(ā)

λ(â) exp
(
ũ(λi)
1−r

)
fλ(λi)dλi

for z ∈ [λ(â), λ(ā)] .

Notice from (F.1) that creator participation depends on consumer participation G (.), which in turn depends
on creator participation threshold â through the distribution of content design F̃ (z; r, τ, â). If c → 0 then
we recover the model in Section E.1.

For each given r and τ chosen by the platform, let â = â(r, τ) denote the solution of (F.1). Then,
we prove that if buyer participation (as measured by distribution G) is not too elastic, then (r, τ) is
increasing in r and τ . That is, fewer creators participate when the platform intensifies the competition
for recommendations or increases its fee. Taking into account this change in creator participation, it can
be shown that F̃ (z; r, τ, â(r, τ)) is increasing in τ and r in the sense of first-order stochastic dominance
(FOSD), as in Lemma E.1.

Based on this result, we verify that the results in Proposition 2 and Proposition 3 remain valid. The
only mechanical difference in this scenario is that the platform’s choice of mode now influences the market
outcome through an additional effect of changing the composition of ai of the active creators.
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F.2 Analytical details and proofs

We apply the same set of assumptions as in Section E. Recall creators are asymmetric in their intrinsic
image gain ai ∈ [a, ā], following distribution F . Let â ∈ [a, ā] be the threshold such that all creators with
ai ≥ â are active (and join the platform) whereas those with ai < â are inactive. Conditioned on the set of
participating creators ai ≥ â, denote the recommendation-weighted distribution of content design as

F̃ (z; r, τ, â) =

∫ z
λ(â) exp

(
ũ(λi)
1−r

)
fλ(λi)dλi∫ λ(ā)

λ(â) exp
(
ũ(λi)
1−r

)
fλ(λi)dλi

for z ∈ [λ(â), λ(ā)] ,

where recall fλ(z) = f(λ−1(z))∂λ
−1(z)
∂z and

λ (ai) = arg max
λi∈[0,1]

{
exp

(
ũ(λi)
1 − r

)
× λi × (ai + (1 − τ)v (λi))

}
.

Observe that the distribution F̃ (z; r, τ, â) becomes higher in the sense of FOSD when the threshold â

increases:

∂F̃ (z; r, τ, â)
∂â

= −

(∫ λ(â)

z

exp
(
ũ(λi)
1 − r

)
fλ(λi)dλi

)
exp

(
ũ(λ(â))
1 − r

)
fλ(λ(â))∂λ(â)

∂a
< 0

For any given r and τ , the threshold type â is pinned down by zero-profit condition

G

(∫ λ(ā)

λ(â)
ũ(z)dF̃ (z; r, τ, â)

) exp
(
ũ(λ(â))

1−r

)
∫ ā
â

exp
(
ũ(λ(ai))

1−r

)
dF (ai)

λ (â) (â+ (1 − τ)v (λ (â))) = c. (F.2)

As
∫ λ(ā)
λ(â) ũ(z)dF̃ (z; r, τ, â) and 1/

∫ ā
â

exp
(
ũ(λ(ai))

1−r

)
dF (ai) are increasing in â, by the envelope theorem we

conclude that the left-hand side of (F.2) is increasing in â. Thus, the solution â ∈ [a, ā] must be unique
whenever it exists. If the solution â ∈ [a, ā] to (F.2) does not exist, then we either set â = a (all creators
are active) or â = ā (all creators are inactive).

Lemma F.1. Consider â implicitly defined by (F.2). If G is sufficiently inelastic, then â = â(r, τ) is
increasing in r and τ . Consequently, F̃ (z; r, τ, â(r, τ)) is increasing in τ and r in the sense of first-order
stochastic dominance (FOSD).

Proof. Denote π̃(a) = exp
(
ũ(λ(a))

1−r

)
λ (a) (a+ (1 − τ)v (λ (a))) and the left-hand side of (F.2) as

ϕ(a) ≡ G

(∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ, a)

)
π̃(a)∫ ā

a
exp

(
ũ(λ(ai))

1−r

)
dF (ai)

for arbitrary a. By the implicit function theorem,

dâ

dτ
=

∂ϕ(a)
∂τ

−∂ϕ(a)
∂a

|a=â.

We already know that

∂ϕ(a)
∂a

= g

(∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ, a)

)
π̃(a)∫ ā

a
exp

(
ũ(λ(ai))

1−r

)
dF (ai)

∂

∂a

∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ, a)

+G
(∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ, a)

)
∂

∂a

 π̃(a)∫ ā
a

exp
(
ũ(λ(ai))

1−r

)
dF (ai)

 > 0
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for any a. Meanwhile,

∂ϕ(â)
∂τ

= g

(∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ, a)

)
π̃(a)∫ ā

a
exp

(
ũ(λ(ai))

1−r

)
dF (ai)

∂

∂τ

∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ, a)

+G
(∫ λ(ā)

λ(a)
ũ(z)dF̃ (z; r, τ, a)

)
∂

∂τ

 π̃(a)∫ ā
a

exp
(
ũ(λ(ai))

1−r

)
dF (ai)

 ,

where the second line is strictly negative due to the Envelope Theorem (so that ∂π̃/∂τ ≤ 0) and λ(ai)
being increasing in τ . Therefore, if G is sufficiently inelastic, i.e., g(.)

G(.) is small, then ∂ϕ(â)
∂τ < 0. We then

conclude dâ
dτ > 0. The same proof applies for showing dâ

dr > 0.
Then, to establish first-order stochastic dominance:

dF̃ (z; r, τ, â(r, τ))
dτ

= ∂F̃ (z; r, τ, â(r, τ))
∂τ

+ ∂F̃ (z; r, τ, â(r, τ))
∂a

dâ(r, τ)
dτ

< 0.

by Lemma E.3 and the result above. The same step applies for showing dF̃ (z;r,τ,â(r,τ))
dr < 0.

Intuitively, the sign of dâ/dτ , which reflects how the increase in τ affects the composition of active
creators, is generally ambiguous due to two opposing effects. On the one hand, a higher τ reduces each
creator’s per-viewer profit, thus raising â as fewer creators participate. On the other hand, a higher τ
induces a greater content broadness, thus raising the mass of consumers who initiate search. This market
expansion effect increases the marginal creator’s profit, thus lowering â. Nonetheless, if G is sufficiently
inelastic, then the first effect dominates.

We are now ready to compare across the three modes of operations. For simplicity, denote distribution

F̂ (z; r, τ) = F̃ (z; r, τ, â(r, τ))

=

∫ z
λ(â(r,τ)) exp

(
ũ(λi)
1−r

)
fλ(λi)dλi∫ λ(ā)

λ(â(r,τ)) exp
(
ũ(λi)
1−r

)
fλ(λi)dλi

for z ∈ [λ(â(r, τ)), λ(ā)] .

The profit function of the monopoly platform in the pure membership, pure discovery, and hybrid modes
are, respectively,

ΠM (τ) = G

(∫ λ(ā)

λ(a)
ũ(z)dF̂ (z; −∞, τ)

)
τ

∫ λ(ā)

λ(a)
v(z)dF̂ (z; −∞, τ);

ΠD(r) = G

(∫ λ(ā)

λ(a)
ũ(z)dF̂ (z; r, 1)

)
A− C;

ΠH(r, τ) = G

(∫ λ(ā)

λ(a)
ũ(z)dF̂ (z; r, τ)

)(
A+ τ

∫ λ(ā)

λ(a)
v(z)dF̂ (z; r, τ)

)
− C

Denote Π∗
M , Π∗

D, and Π∗
H as the respective maximized profit, and the corresponding effective distribution

of content design as F̂ ∗
M , F̂ ∗

D, and F̂ ∗
H .

Proposition F.1. Consider a move from the pure discovery mode to the hybrid mode and suppose G is
sufficiently inelastic. Then, in the model of asymmetric creators with elastic creator participation described
in this section, the equilibrium distribution of content design broadness becomes lower in the sense of
first-order stochastic dominance (F̂ ∗

D ≥FOSD F̂ ∗
H); and the platform profit increases (Π∗

H > Π∗
D).

Proof. The results follow from the same proof as Proposition E.1 after applying Lemma F.1.
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Proposition F.2. Consider a move from the pure membership mode to the hybrid mode and suppose G is
sufficiently inelastic. Then, in the model of asymmetric creators with elastic creator participation described
in this section, there exist weakly positive thresholds Amono, A′

mono, such that:

• the equilibrium distribution of content design broadness becomes higher in the sense of first-order
stochastic dominance (F̂ ∗

H ≥FOSD F̂ ∗
M ) if A ≥ A′

mono;

• The platform profit increases if and only if A ≥ Amono > 0.

Proof. The results follow from the same proof as Proposition E.2 after applying Lemma F.1.
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